RAD in the realm of next-generation sequencing technologies

被引:116
|
作者
Rowe, H. C. [1 ]
Renaut, S. [1 ]
Guggisberg, A. [1 ]
机构
[1] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada
关键词
genotyping by sequencing; Illumina; restriction-site-associated DNA; MARKERS;
D O I
10.1111/j.1365-294X.2011.05197.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The first North American RAD Sequencing and Genomics Symposium, sponsored by Floragenex (http://www.floragenex.com/radmeeting/), took place in Portland, Oregon (USA) on 19 April 2011. This symposium was convened to promote and discuss the use of restriction-site-associated DNA (RAD) sequencing technologies. RAD sequencing is one of several strategies recently developed to increase the power of data generated via short-read sequencing technologies by reducing their complexity (Baird et al. 2008; Huang et al. 2009; Andolfatto et al. 2011; Elshire et al. 2011). RAD sequencing, as a form of genotyping by sequencing, has been effectively applied in genetic mapping and quantitative trait loci (QTL) analyses in a range of organisms including nonmodel, genetically highly heterogeneous organisms (Table 1; Baird et al. 2008; Baxter et al. 2011; Chutimanitsakun et al. 2011; Pfender et al. 2011). RAD sequencing has recently found applications in phylogeography (Emerson et al. 2010) and population genomics (Hohenlohe et al. 2010). Considering the diversity of talks presented during this meeting, more developments are to be expected in the very near future.
引用
收藏
页码:3499 / 3502
页数:4
相关论文
共 50 条
  • [1] APPLICATIONS OF NEXT-GENERATION SEQUENCING Sequencing technologies - the next generation
    Metzker, Michael L.
    [J]. NATURE REVIEWS GENETICS, 2010, 11 (01) : 31 - 46
  • [2] Next-Generation Sequencing Technologies
    McCombie, W. Richard
    McPherson, John D.
    Mardis, Elaine R.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2019, 9 (11):
  • [3] Next-generation sequencing technologies: An overview
    Hu, Taishan
    Chitnis, Nilesh
    Monos, Dimitri
    Dinh, Anh
    [J]. HUMAN IMMUNOLOGY, 2021, 82 (11) : 801 - 811
  • [4] Next-Generation Sequencing and Emerging Technologies
    Kumar, Kishore R.
    Cowley, Mark J.
    Davis, Ryan L.
    [J]. SEMINARS IN THROMBOSIS AND HEMOSTASIS, 2024, 50 (07): : 1026 - 1038
  • [5] Landscape of Next-Generation Sequencing Technologies
    Niedringhaus, Thomas P.
    Milanova, Denitsa
    Kerby, Matthew B.
    Snyder, Michael P.
    Barron, Annelise E.
    [J]. ANALYTICAL CHEMISTRY, 2011, 83 (12) : 4327 - 4341
  • [6] Next-Generation DNA Sequencing Technologies
    Kurekci, Gulsum Kayman
    Dincer, Pervin
    [J]. ERCIYES MEDICAL JOURNAL, 2014, 36 (03) : 99 - 103
  • [7] Next-Generation Sequencing and Emerging Technologies
    Kumar, Kishore R.
    Cowley, Mark J.
    Davis, Ryan L.
    [J]. SEMINARS IN THROMBOSIS AND HEMOSTASIS, 2019, 45 (07): : 661 - 673
  • [8] Application of next-generation sequencing technologies in virology
    Radford, Alan D.
    Chapman, David
    Dixon, Linda
    Chantrey, Julian
    Darby, Alistair C.
    Hall, Neil
    [J]. JOURNAL OF GENERAL VIROLOGY, 2012, 93 : 1853 - 1868
  • [9] Application of next-generation sequencing technologies in Neurology
    Jiang, Teng
    Tan, Meng-Shan
    Tan, Lan
    Yu, Jin-Tai
    [J]. ANNALS OF TRANSLATIONAL MEDICINE, 2014, 2 (12)
  • [10] Next-generation sequencing technologies in diabetes research
    Fareed, Mohd
    Chauhan, Waseem
    Fatma, Rafat
    Din, Inshah
    Afzal, Mohammad
    Ahmed, Zabeer
    [J]. DIABETES EPIDEMIOLOGY AND MANAGEMENT, 2022, 7