Transforms for Non-conformal Harmonic Surfaces in

被引:0
|
作者
Sakaki, Makoto [1 ]
机构
[1] Hirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
关键词
Non-conformal harmonic map; surface; transform; MINIMAL-SURFACES;
D O I
10.1007/s00025-017-0724-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a non-conformal harmonic surface in , we give transforms to get holomorphic maps to the 2-sphere, which is a generalization of the classical fact that the Gauss map of a minimal surface in is holomorphic.
引用
收藏
页码:1807 / 1811
页数:5
相关论文
共 50 条
  • [1] A Representation Formula for Non-conformal Harmonic Surfaces in R3
    Dioos, Bart
    Sakaki, Makoto
    [J]. RESULTS IN MATHEMATICS, 2019, 74 (01)
  • [2] Non-conformal harmonic maps into the 3-sphere
    Dioos, Bart
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (08)
  • [3] A new universal approximate model for conformal contact and non-conformal contact of spherical surfaces
    Xin Fang
    Chunhua Zhang
    Xun Chen
    Yashun Wang
    Yuanyuan Tan
    [J]. Acta Mechanica, 2015, 226 : 1657 - 1672
  • [4] A new universal approximate model for conformal contact and non-conformal contact of spherical surfaces
    Fang, Xin
    Zhang, Chunhua
    Chen, Xun
    Wang, Yashun
    Tan, Yuanyuan
    [J]. ACTA MECHANICA, 2015, 226 (06) : 1657 - 1672
  • [5] Conditions for assuming a conformal contact to be non-conformal
    Kim, H. K.
    Yoon, K. H.
    [J]. PROCEEDINGS OF ASIA INTERNATIONAL CONFERENCE ON TRIBOLOGY 2018 (ASIATRIB 2018), 2018, : 27 - 28
  • [6] Conformal anomaly for non-conformal scalar fields
    Casarin, Lorenzo
    Godazgar, Hadi
    Nicolai, Hermann
    [J]. PHYSICS LETTERS B, 2018, 787 : 94 - 99
  • [7] Non-conformal entanglement entropy
    Marika Taylor
    William Woodhead
    [J]. Journal of High Energy Physics, 2018
  • [8] Tribological behaviours of textured surfaces under conformal and non-conformal starved lubricated contact conditions
    Wos, Slawomir
    Koszela, Waldemar
    Pawlus, Pawel
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2015, 229 (04) : 398 - 409
  • [9] On some non-conformal fractals
    Rams, Michal
    [J]. NONLINEARITY, 2010, 23 (10) : 2423 - 2428
  • [10] Non-conformal domain decomposition methods for time-harmonic Maxwell equations
    Shao, Yang
    Peng, Zhen
    Lim, Kheng Hwee
    Lee, Jin-Fa
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2145): : 2433 - 2460