The multidimensional dependence of halo bias in the eye of a machine: a tale of halo structure, assembly, and environment

被引:42
|
作者
Han, Jiaxin [1 ,2 ]
Li, Yin [2 ,3 ,4 ]
Jing, Yipeng [1 ,5 ]
Nishimichi, Takahiro [2 ]
Wang, Wenting [2 ]
Jiang, Chunyan [6 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Astron, Shanghai 200240, Peoples R China
[2] Univ Tokyo, Kavli IPMU WPI, UTIAS, Kashiwa, Chiba 2778583, Japan
[3] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[5] Shanghai Jiao Tong Univ, IFSA Collaborat Innovat Ctr, Shanghai 200240, Peoples R China
[6] Shanghai Astron Observ, CAS Key Lab Res Galaxies & Cosmol, Shanghai 200030, Peoples R China
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
methods: data analysis; galaxies: haloes; dark matter; DARK-MATTER HALOES; MASS; SIMULATIONS; SUBHALOES; EVOLUTION; CLUSTERS; GROWTH; PEAKS; FILAMENTS; GALAXIES;
D O I
10.1093/mnras/sty2822
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a novel approach in exploring the joint dependence of halo bias on multiple halo properties using Gaussian process regression. Using a lambda cold dark matter N-body simulation, we carry out a comprehensive study of the joint bias dependence on halo structure, formation history, and environment. We show that the bias is a multivariate function of halo properties that falls into three regimes. For massive haloes, halo mass explains the majority of bias variation. For early-forming haloes, bias depends sensitively on the recent mass accretion history. For low-mass and late-forming haloes, bias depends more on the structure of a halo such as its shape and spin. Our framework enables us to convincingly prove that V-max/V-vir is a lossy proxy of formation time for bias modelling, whereas the mass, spin, shape, and formation time variables are non-redundant with respect to each other. Combining mass and formation time largely accounts for the mass accretion history dependence of bias. Combining all the internal halo properties fully accounts for the density profile dependence inside haloes, and predicts the clustering variation of individual haloes to a 20 per cent level at similar to 10 Mpc h(-1). When an environmental density is measured outside 1Mpc h(-1) from the halo centre, it outperforms and largely accounts for the bias dependence on the internal halo structure, explaining the bias variation above a level of 30 per cent.
引用
收藏
页码:1900 / 1919
页数:20
相关论文
共 50 条
  • [1] Halo assembly bias and the tidal anisotropy of the local halo environment
    Paranjape, Aseem
    Hahn, Oliver
    Sheth, Ravi K.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (03) : 3631 - 3647
  • [2] Dependence of halo bias on mass and environment
    Shi, Jingjing
    Sheth, Ravi K.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 473 (02) : 2486 - 2492
  • [3] The scale-dependence of halo assembly bias
    Sunayama, Tomomi
    Hearin, Andrew P.
    Padmanabhan, Nikhil
    Leauthaud, Alexie
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 458 (02) : 1510 - 1516
  • [4] The cosmological dependence of halo and galaxy assembly bias
    Contreras, S.
    Chaves-Montero, J.
    Zennaro, M.
    Angulo, R. E.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (03) : 3412 - 3422
  • [5] Dependence of halo bias and kinematics on assembly variables
    Xu, Xiaoju
    Zheng, Zheng
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (02) : 1579 - 1594
  • [6] Tidal effects and the environment dependence of halo assembly
    Hahn, Oliver
    Porciani, Cristiano
    Dekel, Avishai
    Carollo, C. Marcella
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 398 (04) : 1742 - 1756
  • [7] HALO ASSEMBLY BIAS IN HIERARCHICAL STRUCTURE FORMATION
    Dalal, Neal
    White, Martin
    Bond, J. Richard
    Shirokov, Alexander
    [J]. ASTROPHYSICAL JOURNAL, 2008, 687 (01): : 12 - 21
  • [8] Predicting halo occupation and galaxy assembly bias with machine learning
    Xu, Xiaoju
    Kumar, Saurabh
    Zehavi, Idit
    Contreras, Sergio
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (04) : 4879 - 4899
  • [9] On halo formation times and assembly bias
    Li, Yun
    Mo, H. J.
    Gao, L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 389 (03) : 1419 - 1426
  • [10] Halo assembly bias from a deep learning model of halo formation
    Lucie-Smith, Luisa
    Barreira, Alexandre
    Schmidt, Fabian
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 524 (02) : 1746 - 1756