The relationship between entropy and strong orbit equivalence for the minimal homeomorphisms (I)

被引:7
|
作者
Sugisaki, F [1 ]
机构
[1] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
topological entropy; orbit equivalence; minimal dynamical system; dimension group;
D O I
10.1142/S0129167X03001958
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every minimal homeomorphism of a Cantor set its strongly orbit equivalence class contains homeomorphisms of all possible finite entropies.
引用
收藏
页码:735 / 772
页数:38
相关论文
共 50 条
  • [1] ENTROPY VERSUS ORBIT EQUIVALENCE FOR MINIMAL HOMEOMORPHISMS
    BOYLE, M
    HANDELMAN, D
    PACIFIC JOURNAL OF MATHEMATICS, 1994, 164 (01) : 1 - 13
  • [2] On the subshift within a strong orbit equivalence class for minimal homeomorphisms
    Sugisaki, Fumiaki
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 971 - 990
  • [3] Strong orbit realization for minimal homeomorphisms
    Nicholas S. Ormes
    Journal d’Analyse Mathématique, 1997, 71 : 103 - 133
  • [4] Strong orbit realization for minimal homeomorphisms
    Ormes, NS
    JOURNAL D ANALYSE MATHEMATIQUE, 1997, 71 (1): : 103 - 133
  • [5] Strong orbit equivalence of locally compact Cantor minimal systems
    Danilenko, AI
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (01) : 113 - 123
  • [6] STRONG ORBIT EQUIVALENCE AND RESIDUALITY
    Werner, Brett M.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2012, 39 (02) : 285 - 310
  • [7] Eigenvalues and strong orbit equivalence
    Isabel Cortez, Maria
    Durand, Fabien
    Petite, Samuel
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 2419 - 2440
  • [8] Almost continuous orbit equivalence for non-singular homeomorphisms
    Alexandre I. Danilenko
    Andrés del Junco
    Israel Journal of Mathematics, 2011, 183 : 165 - 188
  • [9] Almost continuous orbit equivalence for non-singular homeomorphisms
    Danilenko, Alexandre I.
    Del Junco, Andres
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) : 165 - 188
  • [10] Entropy, products, and bounded orbit equivalence
    Kerr, David
    LI, Hanfeng
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (03) : 904 - 942