Stochastic target detection for hyperspectral data

被引:0
|
作者
Hoff, LE [1 ]
Beaven, SG [1 ]
Coolbaugh, E [1 ]
Winter, EM [1 ]
机构
[1] Hoff Engn, San Diego, CA USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There has been considerable interest in recent years in the recognition and identification of known materials and objects by using airborne hyperspectral sensors. Hyperspectral sensors provide the spectral signature for every pixel, which can be compared to the signature of a material of interest. In this paper a signature recognition algorithm is developed based on the Generalized Likelihood Ratio Test (GLRT) approach. Om starting model for target and clutter assumes that the target signature replaces the background and does not add to it. The recognition algorithm is developed using this model, and then applied to hyperspectral data to illustrate the performance.
引用
收藏
页码:161 / 164
页数:4
相关论文
共 50 条
  • [1] Assessment of target detection limits in hyperspectral data
    Gross, W.
    Boehler, J.
    Schilling, H.
    Middelmann, W.
    Weyermann, J.
    Wellig, P.
    Oechslin, R.
    Kneubuehler, M.
    [J]. TARGET AND BACKGROUND SIGNATURES, 2015, 9653
  • [2] Matched filter stochastic background characterization for hyperspectral target detection
    West, JE
    Messinger, DW
    Ientilucci, EJ
    Kerekes, JP
    Schott, JR
    [J]. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 2005, 5806 : 1 - 12
  • [3] HYPERSPECTRAL ANOMALY DETECTION WITH DATA SPHERING AND UNSUPERVISED TARGET DETECTION
    Chen, Shuhan
    Li, Xiaorun
    Zhao, Liaoying
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1975 - 1978
  • [4] Data field modeling and data description for hyperspectral target detection
    Liu, Da
    Li, Jianxun
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [5] Data field modeling and data description for hyperspectral target detection
    [J]. Liu, Da (oliver8641@sjtu.edu.cn), 1600, SPIE (10):
  • [6] OPTIONS FOR SOLID POINT TARGET DETECTION IN HYPERSPECTRAL DATA
    Yurkovetsky, Eliad
    Rotman, Stanley R.
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2270 - 2273
  • [7] Fusion of Hyperspectral and LADAR Data for Autonomous Target Detection
    Kanaev, A. V.
    Walls, T. J.
    [J]. MULTISENSOR, MULTISOURCE INFORMATION FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS 2011, 2011, 8064
  • [8] TARGET DETECTION ALGORITHM FOR AIRBORNE THERMAL HYPERSPECTRAL DATA
    Marwaha, Richa
    Kumar, Anil
    Raju, P. L. N.
    Murthy, Y. V. N. Krishna
    [J]. ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 827 - 832
  • [9] Kernel and Stochastic Expectation Maximization Fusion for Target Detection in Hyperspectral Imagery
    Elbakary, M. I.
    Alam, M. S.
    [J]. OPTICAL PATTERN RECOGNITION XXII, 2011, 8055
  • [10] Hyperspectral Target Detection
    Nasrabadi, Nasser M.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) : 34 - 44