Decomposing toroidal graphs into circuits and edges

被引:1
|
作者
Xu, BG
Wang, LS
机构
[1] Nanjiang Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
decomposition; circuit; torus;
D O I
10.1016/j.dam.2004.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Erdos et al. (Canad. J. Math. 18 (1966) 106-112) conjecture that there exists a constant d(ce) such that every simple graph on n vertices can be decomposed into at most d(ce)n circuits and edges. We consider toroidal graphs, where the graphs can be embedded on the torus, and give a polynomial time algorithm to decompose the edge set of an even toroidal graph on n vertices into at most (n + 3)/2 circuits. As a corollary, we get a polynomial time algorithm to decompose the edge set of a toroidal graph (not necessarily even) on n vertices into at most 3(n - 1)/2 circuits and edges. This settles the conjecture for toroidal graphs. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
  • [1] Decomposing Graphs into Edges and Triangles
    Kral, Daniel
    Lidicky, Bernard
    Martins, Taisa L.
    Pehova, Yanitsa
    COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (03): : 465 - 472
  • [2] SHARP BOUNDS FOR DECOMPOSING GRAPHS INTO EDGES AND TRIANGLES
    Blumenthal, A.
    Lidicky, B.
    Pikhurko, O.
    Pehova, Y.
    Pfender, F.
    Volec, J.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 463 - 468
  • [3] Decomposing Random Graphs into Few Cycles and Edges
    Korandi, Daniel
    Krivelevich, Michael
    Sudakov, Benny
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (06): : 857 - 872
  • [4] Sharp bounds for decomposing graphs into edges and triangles
    Blumenthal, Adam
    Lidicky, Bernard
    Pehova, Yanitsa
    Pfender, Florian
    Pikhurko, Oleg
    Volec, Jan
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 271 - 287
  • [5] Decomposing complete graphs into isomorphic subgraphs with six vertices and seven edges
    Tian, Zihong
    Du, Yanke
    Kang, Qingde
    ARS COMBINATORIA, 2006, 81 : 257 - 279
  • [6] A Method for Estimating Minimum Sizes of Covering Arrays Avoiding Forbidden Edges by Decomposing Graphs
    Yang, Jingli
    Yin, Shuangyan
    Wang, Jianfeng
    Li, Shijie
    2021 IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2021), 2021, : 185 - 190
  • [7] Decomposing Weighted Graphs
    Ban, Amir
    JOURNAL OF GRAPH THEORY, 2017, 86 (02) : 250 - 254
  • [8] Decomposing graphs with symmetries
    Bauderon, M
    Carrère, F
    GRAPH TRANSFORMATIONS, PROCEEDINGS, 2002, 2505 : 45 - 59
  • [9] TOROIDAL AND NON-TOROIDAL GRAPHS
    VANSTRATEN, P
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (09) : 831 - 831