Choices between OLS with robust inference and feasible GLS in time series regressions

被引:4
|
作者
Baillie, Richard T. [1 ,2 ]
Kim, Kun Ho [3 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
[2] Rimini Ctr Econ Anal, Rimini, Italy
[3] Hanyang Univ, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
OLS; GLS; Feasible GLS; Asymptotic bias; Robust inference; GENERALIZED LEAST-SQUARES; MATRIX; MODEL;
D O I
10.1016/j.econlet.2018.07.036
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider the practice of estimating static regressions by OLS from time series data and using robust standard errors for inference. Depending on the form of exogeneity being violated, the asymptotic bias of OLS can exceed that of GLS. Feasible GLS, where the error process is approximated by a sieve autoregression, can dominate the OLS approach with robust standard errors both in terms of bias and MSE for some regions of the parameter space. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:218 / 221
页数:4
相关论文
共 16 条