A novel ensemble-based wrapper method for feature selection using extreme learning machine and genetic algorithm

被引:53
|
作者
Xue, Xiaowei [1 ]
Yao, Min [1 ]
Wu, Zhaohui [1 ]
机构
[1] Zhejiang Univ, Sch Comp Sci & Technol, Hangzhou 310007, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; Genetic algorithm; Extreme learning machine; Ensemble learning; CLASSIFICATION; PSO;
D O I
10.1007/s10115-017-1131-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel wrapper feature selection algorithm for classification problems, namely hybrid genetic algorithm (GA)- and extreme learning machine (ELM)-based feature selection algorithm (HGEFS). It utilizes GA to wrap ELM to search for the optimum subsets in the huge feature space, and then, a set of subsets are selected to make ensemble to improve the final prediction accuracy. To prevent GA from being trapped in the local optimum, we propose a novel and efficient mechanism specifically designed for feature selection problems to maintain GA's diversity. To measure each subset's quality fairly and efficiently, we adopt a modified ELM called error-minimized extreme learning machine (EM-ELM) which automatically determines an appropriate network architecture for each feature subsets. Moreover, EM-ELM has good generalization ability and extreme learning speed which allows us to perform wrapper feature selection processes in an affordable time. In other words, we simultaneously optimize feature subset and classifiers' parameters. After finishing the search process of GA, to further promote the prediction accuracy and get a stable result, we select a set of EM-ELMs from the obtained population to make the final ensemble according to a specific ranking and selecting strategy. To verify the performance of HGEFS, empirical comparisons are carried out on different feature selection methods and HGEFS with benchmark datasets. The results reveal that HGEFS is a useful method for feature selection problems and always outperforms other algorithms in comparison.
引用
收藏
页码:389 / 412
页数:24
相关论文
共 50 条
  • [1] A novel ensemble-based wrapper method for feature selection using extreme learning machine and genetic algorithm
    Xiaowei Xue
    Min Yao
    Zhaohui Wu
    Knowledge and Information Systems, 2018, 57 : 389 - 412
  • [2] Hybrid wrapper feature selection method based on genetic algorithm and extreme learning machine for intrusion detection
    Maseno, Elijah M.
    Wang, Zenghui
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [3] Hybrid wrapper feature selection method based on genetic algorithm and extreme learning machine for intrusion detection
    Elijah M. Maseno
    Zenghui Wang
    Journal of Big Data, 11
  • [4] A novel hybrid feature selection and ensemble-based machine learning approach for botnet detection
    Hossain, Md. Alamgir
    Islam, Md. Saiful
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] A novel hybrid feature selection and ensemble-based machine learning approach for botnet detection
    Md. Alamgir Hossain
    Md. Saiful Islam
    Scientific Reports, 13
  • [6] A Machine Learning-Based Wrapper Method for Feature Selection
    Patel, Damodar
    Saxena, Amit
    Wang, John
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2024, 20 (01)
  • [7] Classification of lung cancer using ensemble-based feature selection and machine learning methods
    Cai, Zhihua
    Xu, Dong
    Zhang, Qing
    Zhang, Jiexia
    Ngai, Sai-Ming
    Shao, Jianlin
    MOLECULAR BIOSYSTEMS, 2015, 11 (03) : 791 - 800
  • [8] Wrapper Feature Subset Selection for Dimension Reduction Based on Ensemble Learning Algorithm
    Panthong, Rattanawadee
    Srivihok, Anongnart
    THIRD INFORMATION SYSTEMS INTERNATIONAL CONFERENCE 2015, 2015, 72 : 162 - 169
  • [9] Wrapper feature selection method based differential evolution and extreme learning machine for intrusion detection system
    Al-Yaseen, Wathiq Laftah
    Idrees, Ali Kadhum
    Almasoudy, Faezah Hamad
    PATTERN RECOGNITION, 2022, 132
  • [10] Research on the ensemble learning classification algorithm based on the novel feature selection method
    Yao Ming-hai
    Wang Na
    2013 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES), 2013, : 263 - 267