Bayesian survival analysis in genetic association studies

被引:3
|
作者
Tachmazidou, Ioanna [1 ]
Andrew, Toby [2 ]
Verzilli, Claudio J. [3 ]
Johnson, Michael R. [4 ]
De Iorio, Maria [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Publ Hlth, London W2 1PG, England
[2] Kings Coll London, Twin Res Unit, London SE1 7EH, England
[3] Univ London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, England
[4] Univ London Imperial Coll Sci Technol & Med, Div Neurosci & Mental Hlth, London SW7 2AZ, England
基金
英国惠康基金;
关键词
D O I
10.1093/bioinformatics/btn351
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Large-scale genetic association studies are carried out with the hope of discovering single nucleotide polymorphisms involved in the etiology of complex diseases. There are several existing methods in the literature for performing this kind of analysis for case-control studies, but less work has been done for prospective cohort studies. We present a Bayesian method for linking markers to censored survival outcome by clustering haplotypes using gene trees. Coalescent-based approaches are promising for LD mapping, as the coalescent offers a good approximation to the evolutionary history of mutations. Results: We compare the performance of the proposed method in simulation studies to the univariate Cox regression and to dimension reduction methods, and we observe that it performs similarly in localizing the causal site, while offering a clear advantage in terms of false positive associations. Moreover, it offers computational advantages. Applying our method to a real prospective study, we observe potential association between candidate ABC transporter genes and epilepsy treatment outcomes.
引用
收藏
页码:2030 / 2036
页数:7
相关论文
共 50 条
  • [1] Bayesian Analysis of Rare Variants in Genetic Association Studies
    Yi, Nengjun
    Zhi, Degui
    GENETIC EPIDEMIOLOGY, 2011, 35 (01) : 57 - 69
  • [2] Bayesian Semiparametric Meta-Analysis for Genetic Association Studies
    De Iorio, Maria
    Newcombe, Paul J.
    Tachmazidou, Ioanna
    Verzilli, Claudio J.
    Whittaker, John C.
    GENETIC EPIDEMIOLOGY, 2011, 35 (05) : 333 - 340
  • [4] A Bayesian toolkit for genetic association studies
    Lunn, DJ
    Whittaker, JC
    Best, N
    GENETIC EPIDEMIOLOGY, 2006, 30 (03) : 231 - 247
  • [5] A Variance Components Factor Model for Genetic Association Studies: A Bayesian Analysis
    Nonyane, B. A. S.
    Whittaker, J. C.
    GENETIC EPIDEMIOLOGY, 2010, 34 (06) : 529 - 536
  • [6] Bayesian meta analysis of genetic association studies with different sets of markers
    Verzilli, Claudio
    Chapman, Juliet
    Hingorani, Aroon
    Pablo-Casas, Juan
    Shah, Tina
    Smeeth, Liam
    Whittaker, John
    ANNALS OF HUMAN GENETICS, 2007, 71 : 552 - 553
  • [7] Bayesian statistical methods for genetic association studies
    Matthew Stephens
    David J. Balding
    Nature Reviews Genetics, 2009, 10 : 681 - 690
  • [8] Bayesian statistical methods for genetic association studies
    Stephens, Matthew
    Balding, David J.
    NATURE REVIEWS GENETICS, 2009, 10 (10) : 681 - 690
  • [9] Bayesian meta-analysis of genetic association studies with different sets of markers
    Verzilli, Claudio
    Shah, Tina
    Casas, Juan P.
    Chapman, Juliet
    Sandhu, Manjinder
    Debenham, Sally L.
    Boekholdt, Matthijs S.
    Khaw, Kay Tee
    Wareham, Nicholas J.
    Judson, Richard
    Benjamin, Emelia J.
    Kathiresan, Sekar
    Larson, Martin G.
    Rong, Jian
    Sofat, Reecha
    Humphries, Steve E.
    Smeeth, Liam
    Cavalleri, Gianpiero
    Whittaker, John C.
    Hingorani, Aroon D.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 82 (04) : 859 - 872
  • [10] Bayesian implementation of a genetic model-free approach to the meta-analysis of genetic association studies
    Minelli, C
    Thompson, JR
    Abrams, KR
    Lambert, PC
    STATISTICS IN MEDICINE, 2005, 24 (24) : 3845 - 3861