Deep Learning-Based Automatic Modulation Recognition Method in the Presence of Phase Offset

被引:43
|
作者
Shi, Jie [1 ]
Hong, Sheng [2 ]
Cai, Changxin [3 ]
Wang, Yu [2 ]
Huang, Hao [2 ]
Gui, Guan [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect Engn & Optoelect Technol, Zijin Coll, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
[3] Yangtze Univ, Sch Elect & Informat, Jingzhou 434023, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Modulation; OFDM; Convolutional neural networks; Wireless communication; Telecommunications; Deep learning; convolutional neural network; automatic modulation recognition; phase offset; NEURAL-NETWORK; DOA ESTIMATION; MASSIVE MIMO; CLASSIFICATION; INTELLIGENT; ALLOCATION;
D O I
10.1109/ACCESS.2020.2978094
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic modulation recognition (AMR) plays an important role in various communications systems. It has the ability of adaptive modulation and can adapt to various complex environments. Automatic modulation recognition is also widely used in orthogonal frequency division multiplexing (OFDM) systems. However, because the recognition accuracy of traditional methods to extract the features of OFDM signals is very limited. In order to solve these problems, many deep learning based AMR methods have been proposed to improve the recognition performance. However, most of these AMR methods neglect the harmful effect by carrier phase offset (PO) which often appears in realistic communications systems. Hence it is required to consider the PO effect for designing the OFDM system. Unlike conventional methods, we propose a convolutional neural network (CNN) based AMR method for considering PO in the OFDM system. The proposed method is used to eliminate the PO to achieve the high classification accuracy. Experiment results are provided to confirm the proposed method when comparing to conventional methods.
引用
收藏
页码:42841 / 42847
页数:7
相关论文
共 50 条
  • [1] Deep Learning-Based Automatic Modulation Recognition in OTFS and OFDM systems
    Zhou, Jinggan
    Liao, Xuewen
    Gao, Zhenzhen
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [2] Deep Learning-based Automatic Modulation Recognition Algorithm in Internet of Things
    Wang, Yu
    Gui, Guan
    Huang, Hao
    Wang, Jie
    Yin, Yue
    Zhou, Tian
    Zhao, Yu
    Sheng, Hong
    Zhu, Xiaomei
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 576 - 579
  • [3] Deep Learning Aided Method for Automatic Modulation Recognition
    Yang, Cheng
    He, Zhimin
    Peng, Yang
    Wang, Yu
    Yang, Jie
    IEEE ACCESS, 2019, 7 : 109063 - 109068
  • [4] Deep Learning-Based Cooperative Automatic Modulation Classification Method for MIMO Systems
    Wang, Yu
    Wang, Juan
    Zhang, Wei
    Yang, Jie
    Gui, Guan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (04) : 4575 - 4579
  • [5] Deep Learning-based Automatic Modulation Recognition Algorithm in Non-Cooperative Communication systems
    He, Zhimin
    Peng, Yang
    Zhao, Yu
    Yang, Jie
    Wang, Lei
    Zheng, Baoyu
    Gui, Guan
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [6] Automatic Modulation Recognition Method Based on Phase Transformation and Deep Residual Shrinkage Network
    Chen, Hao
    Guo, Wenpu
    Kang, Kai
    Hu, Guojie
    ELECTRONICS, 2024, 13 (11)
  • [7] Deep Learning-Based Phase Unwrapping Method
    Li, Dongxu
    Xie, Xianming
    IEEE ACCESS, 2023, 11 : 85836 - 85851
  • [8] A Lightweight Automatic Modulation Recognition Algorithm Based on Deep Learning
    Yi, Dong
    Wu, Di
    Hu, Tao
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2023, E106-B (04) : 367 - 373
  • [9] Contrastive Learning-Based Multimodal Fusion Model for Automatic Modulation Recognition
    Liu, Fugang
    Pan, Jingyi
    Zhou, Ruolin
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (01) : 78 - 82
  • [10] Lightweight decentralized learning-based automatic modulation classification method
    Yang J.
    Dong B.
    Fu X.
    Wang Y.
    Gui G.
    Tongxin Xuebao/Journal on Communications, 2022, 43 (07): : 134 - 142