Error analysis of projection methods for non inf-sup stable mixed finite elements. The transient Stokes problem

被引:2
|
作者
de Frutos, Javier [1 ]
Garcia-Archilla, Bosco [2 ]
Novo, Julia [3 ]
机构
[1] Univ Valladolid, Inst Invest Matemat IMUVA, Valladolid, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[3] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
关键词
Projection methods; PSPG stabilization; Non inf-sup stable elements; APPROXIMATION; EQUATIONS; CONVERGENCE; STABILITY;
D O I
10.1016/j.amc.2017.11.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modified Chorin-Teman (Euler non-incremental) projection method and a modified Euler incremental projection method for non inf-sup stable mixed finite elements are analyzed. The analysis of the classical Euler non-incremental and Euler incremental methods are obtained as a particular case. We first prove that the modified Euler non-incremental scheme has an inherent stabilization that allows the use of non inf-sup stable mixed finite elements without any kind of extra added stabilization. We show that it is also true in the case of the classical Chorin-Temam method. For the second scheme, we study a stabilization that allows the use of equal-order pairs of finite elements. The relation of the methods with the so-called pressure stabilized Petrov Galerkin method (PSPG) is established. The influence of the chosen initial approximations in the computed approximations to the pressure is analyzed. Numerical tests confirm the theoretical results. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:154 / 173
页数:20
相关论文
共 50 条
  • [1] Error Analysis of Projection Methods for Non inf-sup Stable Mixed Finite Elements: The Navier-Stokes Equations
    de Frutos, Javier
    Garcia-Archilla, Bosco
    Novo, Julia
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (01) : 426 - 455
  • [2] The inf-sup condition in mixed finite element methods with application to the Stokes system
    Gunzburger, MD
    COLLECTED LECTURES ON THE PRESERVATION OF STABILITY UNDER DISCRETIZATION, 2002, : 93 - 121
  • [3] INF-SUP STABILITY OF GEOMETRICALLY UNFITTED STOKES FINITE ELEMENTS
    Guzman, Johnny
    Olshanskii, Maxim
    MATHEMATICS OF COMPUTATION, 2018, 87 (313) : 2091 - 2112
  • [4] Applying Local Projection Stabilization to inf-sup Stable Elements
    Rapin, G.
    Lube, G.
    Loewe, J.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 521 - 528
  • [5] Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization
    de Frutos, Javier
    Garcia-Archilla, Bosco
    John, Volker
    Novo, Julia
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 1747 - 1786
  • [6] On inf-sup stabilized finite element methods for transient problems
    Bochev, PB
    Gunzburger, MD
    Shadid, JN
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (15-16) : 1471 - 1489
  • [7] Inf-sup stable non-conforming finite elements of arbitrary order on triangles
    Matthies, G
    Tobiska, L
    NUMERISCHE MATHEMATIK, 2005, 102 (02) : 293 - 309
  • [8] Inf-sup stable non-conforming finite elements of arbitrary order on triangles
    Gunar Matthies
    Lutz Tobiska
    Numerische Mathematik, 2005, 102 : 293 - 309
  • [9] Grad-div Stabilization for the Evolutionary Oseen Problem with Inf-sup Stable Finite Elements
    Javier de Frutos
    Bosco García-Archilla
    Volker John
    Julia Novo
    Journal of Scientific Computing, 2016, 66 : 991 - 1024
  • [10] Grad-div Stabilization for the Evolutionary Oseen Problem with Inf-sup Stable Finite Elements
    de Frutos, Javier
    Garcia-Archilla, Bosco
    John, Volker
    Novo, Julia
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) : 991 - 1024