Evolutionary Multi-objective Optimisation of Business Processes

被引:0
|
作者
Tiwari, Ashutosh [1 ]
Vergidis, Kostas [1 ]
Turner, Chris [1 ]
机构
[1] Cranfield Univ, Sch Appl Sci, Cranfield MK43 0AL, Beds, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper discusses the problem of business process optimisation within a multi-objective evolutionary framework. Business process optimisation is considered as the problem of constructing feasible business process designs with optimum attribute values such as duration and cost. The proposed approach involves the application of a series of Evolutionary Multi-objective Optimisation Algorithms (EMOAs) in an attempt to generate a series of diverse optimised business process designs for the same process requirements. The proposed optimisation framework introduces a quantitative representation of business processes involving two matrices one for capturing the process design and one for calculating and evaluating the process attributes. It also introduces an algorithm that checks the feasibility of each candidate solution (i.e. process design). The experimental results demonstrate that the proposed optimisation framework is capable of producing a satisfactory number of optimised design alternatives considering the problem complexity and high rate of infeasibility.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 50 条
  • [1] Multi-Objective Optimisation of Web Business Processes
    Tiwari, Ashutosh
    Turner, Christopher
    Ball, Peter
    Vergidis, Kostas
    [J]. SIMULATED EVOLUTION AND LEARNING, 2010, 6457 : 573 - 577
  • [2] An evolutionary multi-objective framework for business process optimisation
    Vergidis, Kostas
    Saxena, Dhish
    Tiwari, Ashutosh
    [J]. APPLIED SOFT COMPUTING, 2012, 12 (08) : 2638 - 2653
  • [3] Evolutionary multi-objective optimization of business processes
    Tiwari, Ashutosh
    Vergidis, Kostas
    Majeed, Basim
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 3076 - +
  • [4] Multi-Objective Evolutionary Beer Optimisation
    al-Rifaie, Mohammad Majid
    Cavazza, Marc
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 683 - 686
  • [5] Evolutionary multi-objective optimisation: a survey
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2015, 7 (01) : 1 - 25
  • [6] Composite business processes: An evolutionary multi-objective optimization approach
    Vergidis, Kostas
    Tiwari, Ashutosh
    Majeed, Basim
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2672 - +
  • [7] On the Effect of Populations in Evolutionary Multi-Objective Optimisation
    Giel, Oliver
    Lehre, Per Kristian
    [J]. EVOLUTIONARY COMPUTATION, 2010, 18 (03) : 335 - 356
  • [8] Multi-objective evolutionary optimisation of microwave oscillators
    Brito, LDC
    de Carvalho, P
    Bermúdez, LA
    [J]. ELECTRONICS LETTERS, 2004, 40 (11) : 677 - 678
  • [9] Evolutionary Dynamic Multi-objective Optimisation: A Survey
    Jiang, Shouyong
    Zou, Juan
    Yang, Shengxiang
    Yao, Xin
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (04)
  • [10] Evolutionary Multi-objective Optimisation in Neurotrajectory Prediction
    Galvan, Edgar
    Stapleton, Fergal
    [J]. APPLIED SOFT COMPUTING, 2023, 146