Performance analysis of a multistage internal circulation liquid desiccant dehumidifier

被引:16
|
作者
Cheng, Xingwang [1 ]
Rong, Yangyiming [1 ]
Zhou, Xia [1 ]
Gu, Chenjie [1 ]
Zhi, Xiaoqin [1 ]
Qiu, Limin [1 ]
Yuan, Yijun [2 ]
Wang, Kai [1 ]
机构
[1] Zhejiang Univ, Inst Refrigerat & Cryogen, Hangzhou 310027, Peoples R China
[2] Hangzhou Xinghuan Co Ltd, Hangzhou 311200, Peoples R China
基金
国家重点研发计划;
关键词
Liquid desiccant dehumidifier; Multistage; Internal circulation; Theoretical analysis; MASS-TRANSFER COEFFICIENTS; AIR-CONDITIONING SYSTEM; COOLED/HEATED DEHUMIDIFIER/REGENERATOR; HEAT; COUNTER; MODEL;
D O I
10.1016/j.applthermaleng.2020.115163
中图分类号
O414.1 [热力学];
学科分类号
摘要
A novel multistage internal circulation liquid desiccant dehumidifier (MICLDD) is proposed for feed air drying of air compressors in a cryogenic air separation unit (ASU). The dehumidifier is designed in a multistage structure, in which the packing bed and cooling module are layered separately inside each stage. The solution concentration and flow rate can be evenly distributed according to the moisture content distribution along the dehumidification process using the internal circulation structure. A numerical model validated by using experimental data from previous literatures, is employed to simulate the heat and mass transfer process within the dehumidifier. Effects of the inlet parameters and the number of packing stages on the dehumidification performance are investigated. Results show that the dehumidification efficiency is mainly affected by the mass flow rate of desiccant solution and increases with the mass flow rate of desiccant solution. With the increase of packing series, the heat and mass transfer area increases proportionally, so the dehumidification efficiency is improved. Compared to the structure of the packed tower with cooling tubes proposed in Ref. 1121, the dehumidification efficiency of the MICLDD can be improved by 7.3% with the same pump power consumption.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Performance enhancement analysis of a liquid desiccant dehumidifier with internal cooling for indoor benzene removal
    Huang, Shunyi
    Fu, Huangxi
    Wen, Lixia
    APPLIED THERMAL ENGINEERING, 2024, 243
  • [2] Mathematical model and performance analysis of a new liquid desiccant dehumidifier
    Peng, Donggen
    Cheng, Xiaosong
    Li, Shuangling
    Luo, Danting
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2019, 40 (02): : 474 - 479
  • [3] Performance analysis on the internally cooled dehumidifier using liquid desiccant
    Liu, X. H.
    Chang, X. M.
    Xia, J. J.
    Jiang, Y.
    BUILDING AND ENVIRONMENT, 2009, 44 (02) : 299 - 308
  • [4] Performance analysis of liquid desiccant dehumidifier system for various packing density
    Sonowal, Juri
    Mahajan, Mahesh
    Muthukumar, P.
    Anandalakshmi, R.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 38
  • [5] Performance numerical analysis on an internally-cooled liquid desiccant dehumidifier
    Chan, X. M.
    Liu, X. H.
    Jiang, Y.
    BUILDING SIMULATION 2007, VOLS 1-3, PROCEEDINGS, 2007, : 607 - 613
  • [6] Optimization of a multistage liquid desiccant dehumidifier by neural networks & particle swarm techniques
    Salins, Sampath Suranjan
    Kumar, Shiva
    Ganesha, A.
    Reddy, S. V. Kota
    JOURNAL OF BUILDING ENGINEERING, 2023, 77
  • [7] PERFORMANCE ANALYSIS ON THE INTERNALLY COOLED DEHUMIDIFIER USING TWO LIQUID DESICCANT SOLUTIONS
    Koronaki, I. P.
    Christodoulaki, R. I.
    Papaefthimiou, V. D.
    Rogdakis, E. D.
    PROCEEDINGS OF THE ASME 11TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2012, VOL 2, 2012, : 627 - 638
  • [8] Analysis and optimization on performance of parallel two stage solar liquid desiccant dehumidifier
    Dai, Y. J.
    Xiong, Z. Q.
    Mei, L.
    Wang, R. Z.
    PROCEEDINGS OF ISES SOLAR WORLD CONGRESS 2007: SOLAR ENERGY AND HUMAN SETTLEMENT, VOLS I-V, 2007, : 514 - 518
  • [9] Contribution of an internal heat exchanger to the performance of a liquid desiccant dehumidifier operating near freezing conditions
    Pineda, Sergio M.
    Diaz, Gerardo
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (11) : 2304 - 2310
  • [10] Dynamic Analysis of Mass Transfer in a Liquid Desiccant Dehumidifier
    Wu, Qiong
    Cai, Wenjian
    Wang, Xinli
    Wang, Lei
    PROCEEDINGS OF THE 2015 10TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, 2015, : 28 - 33