THE MONOGENIC CURVELET TRANSFORM

被引:3
|
作者
Storath, Martin [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85748 Garching, Germany
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
Curvelet transform; Analytic signal; Monogenic signal; Hilbert transform; Riesz transform; SIGNAL;
D O I
10.1109/ICIP.2010.5651318
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we reconsider the continuous curvelet transform from a signal processing point of view. We show that the analyzing elements of the curvelet transform, the curvelets, can be understood as analytic signals in the sense of the partial Hilbert transform. We then replace the usual curvelets by the monogenic curvelets, which are analytic signals in the sense of the Riesz transform. They yield a new transform, called the monogenic curvelet transform, which has the interesting property that it behaves at the fine scales like the usual curvelet transform and at the coarse scales like the monogenic wavelet transform. In particular, the new transform is highly anisotropic at the fine scales and yields a well-interpretable amplitude/phase decomposition of the transform coefficients over all scales.
引用
收藏
页码:353 / 356
页数:4
相关论文
共 50 条
  • [1] Directional Multiscale Amplitude and Phase Decomposition by the Monogenic Curvelet Transform
    Storath, Martin
    SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (01): : 57 - 78
  • [2] Multichannel image denoising using color monogenic curvelet transform
    Shan Gai
    Soft Computing, 2018, 22 : 635 - 644
  • [3] Multichannel image denoising using color monogenic curvelet transform
    Gai, Shan
    SOFT COMPUTING, 2018, 22 (02) : 635 - 644
  • [4] The Curvelet Transform
    Ma, Jianwei
    Plonka, Gerlind
    IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (02) : 118 - 133
  • [5] Quaternionic curvelet transform
    Akila, L.
    Roopkumar, R.
    OPTIK, 2017, 131 : 255 - 266
  • [6] Quaternion Ridgelet Transform and Curvelet Transform
    Guangsheng Ma
    Jiman Zhao
    Advances in Applied Clifford Algebras, 2018, 28
  • [7] Curvelet transform on the sphere
    Abrial, P
    Starck, JL
    Moudden, Y
    Nguyen, M
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 433 - 436
  • [8] Quaternion Ridgelet Transform and Curvelet Transform
    Ma, Guangsheng
    Zhao, Jiman
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (04)
  • [9] The Monogenic Wavelet Transform
    Olhede, Sofia C.
    Metikas, Georgios
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (09) : 3426 - 3441
  • [10] Curvelet transform on periodic distributions
    Moorthy, Rajendran Subash
    Roopkumar, Rajakumar
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (11) : 874 - 887