On anti-pentadiagonal persymmetric Hankel matrices with perturbed corners

被引:5
|
作者
da Silva, Joao Lita [1 ,2 ]
机构
[1] NOVA Univ Lisbon, Fac Sci & Technol, Dept Math, Quinta Torre, P-2829516 Caparica, Portugal
[2] NOVA Univ Lisbon, Fac Sci & Technol, GeoBioTec, Quinta Torre, P-2829516 Caparica, Portugal
关键词
Anti-pentadiagonal matrix; Hankel matrix; Eigenvalue; Eigenvector; Orthogonal diagonalization; ARBITRARY POSITIVE POWERS; RANK-ONE MODIFICATION; TRIDIAGONAL MATRICES; INTEGER POWERS;
D O I
10.1016/j.camwa.2016.04.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we express the eigenvalues of real anti-pentadiagonal persymmetric Hankel matrices with perturbed corners as the zeros of explicit rational functions. From these pre-scribed eigenvalues we give an orthogonal diagonalization for these matrices and a formula to compute its integer powers. In particular, an explicit expression not depending on any unknown parameter for the determinant and the inverse of complex anti-pentadiagonal persymmetric Hankel matrices with perturbed corners is provided. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 32 条