A serially correlated gamma frailty model for longitudinal count data

被引:69
|
作者
Henderson, R [1 ]
Shimakura, S
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Fed Parana, Dept Estatist, BR-81531990 Curitiba, Parana, Brazil
关键词
composite likelihood; multivariate gamma distribution; patient-controlled analgesia; recurrent event data;
D O I
10.1093/biomet/90.2.355
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A Poisson-gamma model is introduced to account for between-subjects heterogeneity and within-subjects serial correlation occurring in longitudinal count data. The model extends the usual time-constant shared frailty approach to allow time-varying serially correlated gamma frailty whilst retaining standard marginal assumptions. A composite likelihood approach to estimation and testing for serial correlation is proposed. The work is motivated by a, clinical trial on patient-controlled analgesia where the number of analgesic doses taken, by hospital patients in successive time intervals following abdominal surgery is recorded.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [1] A new serially correlated gamma-frailty process for longitudinal count data
    Fiocco, M.
    Putter, H.
    Van Houwelingen, J. C.
    [J]. BIOSTATISTICS, 2009, 10 (02) : 245 - 257
  • [2] CHANGE DETECTION MODEL FOR SERIALLY CORRELATED DATA
    JONES, RH
    CROWELL, DH
    KAPUNIAI, LE
    [J]. PSYCHOLOGICAL BULLETIN, 1969, 71 (05) : 352 - &
  • [3] The gamma-frailty Poisson model for the nonparametric estimation of panel count data
    Zhang, Y
    Jamshidian, M
    [J]. BIOMETRICS, 2003, 59 (04) : 1099 - 1106
  • [4] CHANGE DETECTION MODEL FOR SERIALLY CORRELATED MULTIVARIATE DATA
    JONES, RH
    CROWELL, DH
    KAPUNIAI, LE
    [J]. BIOMETRICS, 1970, 26 (02) : 269 - &
  • [5] Correlated gamma frailty models for bivariate survival data
    Hanagal, David D.
    Pandey, Arvind
    Ganguly, Ayon
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 3627 - 3644
  • [6] Asymptotic theory for the correlated gamma-frailty model
    Parner, E
    [J]. ANNALS OF STATISTICS, 1998, 26 (01): : 183 - 214
  • [7] Correlated gamma frailty models for bivariate survival time data
    Martins, Adelino
    Aerts, Marc
    Hens, Niel
    Wienke, Andreas
    Abrams, Steven
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (10-11) : 3437 - 3450
  • [8] A profile likelihood theory for the correlated gamma-frailty model with current status family data
    Chang, I-Shou
    Wen, Chi-Chung
    Wu, Yuh-Jenn
    [J]. STATISTICA SINICA, 2007, 17 (03) : 1023 - 1046
  • [10] The correlated and shared gamma frailty model for bivariate current status data: An illustration for cross-sectional serological data
    Hens, N.
    Wienke, A.
    Aerts, M.
    Molenberghs, G.
    [J]. STATISTICS IN MEDICINE, 2009, 28 (22) : 2785 - 2800