Extremal functions for the anisotropic Sobolev inequalities

被引:44
|
作者
El Hamidi, A.
Rakotoson, J. M.
机构
[1] Univ Poitiers, Math Lab, UMR 6086, F-86962 Futuroscope, France
[2] Univ La Rochelle, Math Lab, F-17042 La Rochelle, France
关键词
quasilinear problems; concentration-compactness; anisotropic Sobolev inequalities;
D O I
10.1016/j.anihpc.2006.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of multiple nonnegative solutions to the anisotropic critical problem [GRAPHICS] is proved in suitable anisotropic Sobolev spaces. The solutions correspond to extremal functions of a certain best Sobolev constant. The main tool in our study is an adaptation of the well-known concentration-compactness lemma of P.-L. Lions to anisotropic operators. Furthermore, we show that the set of nontrival solutions S is included in L-infinity(R-N) and is located outside of a ball of radius tau > 0 in L-P* (R-N). (c) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:741 / 756
页数:16
相关论文
共 50 条