Multi-objective green optimization for energy cellular networks using Particle Swarm Optimization algorithm

被引:0
|
作者
Chehlafi, Ayoub [1 ]
Gabli, Mohammed [2 ]
Dahmani, Soufiane [3 ]
机构
[1] Univ Mohammed Premier, Fac Sci FSO, LARI Lab, Oujda, Morocco
[2] Univ Mohammed Premier, Fac Sci FSO, Dept Comp Sci, Oujda, Morocco
[3] Univ Mohammed Premier, Fac Sci FSO, LANO Lab, Oujda, Morocco
关键词
Particle swarm optimization; Green multiobjective problem; Energy cellular networks; GENERATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The energy consumption of cellular networks is essential and this consumption increases with the development of generations of networks and the expansion of the database. The volume of data grows to very large volumes, in terms of the number of users covered by the base stations of this network. Some of the important limitations of cellular networks are the excessive production of carbon dioxide by base stations and the cost of installing enough base stations for good coverage. Our goal in this paper is threefold. Indeed, the cost of installing base stations must be minimized, CO2 emissions must be reduced and network coverage must be maximized. So we have a problem with three conflicting goals. We have modeled this problem as a multi-objective optimization problem. To resolve it, we propose a method based on Particle Swarm Optimization (PSO) algorithms. To evaluate the effectiveness of the proposed algorithm, experiments are performed on a data set. The results showed that our approach improves the coverage of cellular networks, reduces carbon dioxide production, and reduces the cost of base stations installed, simultaneously.
引用
收藏
页码:669 / 674
页数:6
相关论文
共 50 条
  • [1] Algorithm and application of cellular multi-objective particle swarm optimization
    Zhu, D. (dlzhu@ctgu.edu.cn), 1600, Chinese Society of Agricultural Machinery (44):
  • [2] Modified Multi-Objective Particle Swarm Optimization Algorithm for Multi-objective Optimization Problems
    Qiao, Ying
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 520 - 527
  • [3] Optimization of the Hydrological Model Using Multi-objective Particle Swarm Optimization Algorithm
    黄晓敏
    雷晓辉
    王宇晖
    朱连勇
    Journal of Donghua University(English Edition), 2011, 28 (05) : 519 - 522
  • [4] Multi-objective optimization of a Stirling cooler using particle swarm optimization algorithm
    Wang, Lifeng
    Zheng, Pu
    Ji, Yuzhe
    Chen, Xi
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2022, 28 (03) : 379 - 390
  • [5] Multi-objective optimization of water distribution networks using particle swarm optimization
    Surco, Douglas F.
    Macowski, Diogo H.
    Cardoso, Flavia A. R.
    Vecchi, Thelma P. B.
    Ravagnani, Mauro A. S. S.
    DESALINATION AND WATER TREATMENT, 2021, 218 : 18 - 31
  • [6] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [7] Improved multi-objective particle swarm optimization algorithm
    College of Automation, Northwestern Polytechnical University, Xi'an 710129, China
    不详
    Liu, B. (lbn1987113@163.com), 2013, Beijing University of Aeronautics and Astronautics (BUAA) (39):
  • [8] A particle swarm algorithm for multi-objective optimization problem
    Institute of Information Engineering, Xiangtan University, Xiangtan 411105, China
    Moshi Shibie yu Rengong Zhineng, 2007, 5 (606-611):
  • [9] Constrained Multi-objective Particle Swarm Optimization Algorithm
    Gao, Yue-lin
    Qu, Min
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, 2012, 304 : 47 - 55
  • [10] A simplified multi-objective particle swarm optimization algorithm
    Vibhu Trivedi
    Pushkar Varshney
    Manojkumar Ramteke
    Swarm Intelligence, 2020, 14 : 83 - 116