Tight wavelet frames

被引:3
|
作者
Skopina, M. A. [1 ]
机构
[1] St Petersburg State Univ, Fac Appl Math & Control Proc, St Petersburg 198504, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562408020063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An algorithmic method for the construction of multivariate tight wavelet frames with an arbitrary approximation order for any matrix dilation has been presented. Wavelet frames are of great importance for several applied investigations, primarily for signal processing. To construct a wavelet frame, a refinable mask whose polyphase row satisfies a necessary condition for providing the vanishing moment property and can be extended by trigonometric polynomials is required. It was proved that for any matrix dilation M and any positive integer n, there exists a compactly supported tight wavelet frame with the vanishing moment property (VMn).
引用
收藏
页码:182 / 185
页数:4
相关论文
共 50 条
  • [1] Tight wavelet frames
    M. A. Skopina
    [J]. Doklady Mathematics, 2008, 77 : 182 - 185
  • [2] On dual wavelet tight frames
    Han, B
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1997, 4 (04) : 380 - 413
  • [3] Tight wavelet frames for subdivision
    Charina, Maria
    Stoeckler, Joachim
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (02) : 293 - 301
  • [4] On Refinement Masks of Tight Wavelet Frames
    Lebedeva E.A.
    Shcherbakov I.A.
    [J]. Journal of Mathematical Sciences, 2023, 273 (4) : 476 - 484
  • [5] Symmetric and antisymmetric tight wavelet frames
    Goh, Say Song
    Lim, Zhi Yuan
    Shen, Zuowei
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (03) : 411 - 421
  • [6] Tight Wavelet Frames on Multislice Graphs
    Leonardi, Nora
    Van de Ville, Dimitri
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) : 3357 - 3367
  • [7] Tight periodic wavelet frames and approximation orders
    Goh, Say Song
    Han, Bin
    Shen, Zuowei
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 31 (02) : 228 - 248
  • [8] Construction for a class of smooth wavelet tight frames
    Lizhong Peng
    Haihui Wang
    [J]. Science in China Series F: Information Sciences, 2003, 46 : 445 - 458
  • [9] On the Continuous Steering of the Scale of Tight Wavelet Frames
    Puspoki, Zsuzsanna
    Ward, John Paul
    Sage, Daniel
    Unser, Michael
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (03): : 1042 - 1062
  • [10] Tight frame approximations for Gabor and wavelet frames
    Han, DG
    [J]. WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IX, 2001, 4478 : 135 - 141