Universal Algebraic Geometry

被引:4
|
作者
Daniyarova, E. Yu. [1 ]
Myasnikov, A. G. [1 ]
Remeslennikov, V. N. [1 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Schaefer Sch Engn & Sci, Hoboken, NJ 07030 USA
基金
俄罗斯基础研究基金会;
关键词
Algebraic Geometry; Algebraic Structure; DOKLADY Mathematic; Atomic Formula; Predicate Symbol;
D O I
10.1134/S1064562411050073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Universal algebraic geometry over concrete algebraic structures is studied. An algebraic structure is considered and set of all simultaneous solutions of a system of equations is called the algebraic set. It is found that the category of algebraic sets over a L-structure and the category of coordinate algebras of algebraic sets are dually equivalent. Any non-empty algebraic set Y over an equationally Noetherian algebraic structure is a finite union of irreducible algebraic sets, then this decomposition is unique up to the order of the components. A structure is said to be separated by a structure if for every predicate symbol and every elements, there exists an L-homomorphism. A precise definition of direct systems and their direct limits is given using the language of diagram-formulas.
引用
收藏
页码:545 / 547
页数:3
相关论文
共 50 条
  • [1] Universal algebraic geometry
    E. Yu. Daniyarova
    A. G. Myasnikov
    V. N. Remeslennikov
    [J]. Doklady Mathematics, 2011, 84 : 545 - 547
  • [2] Universal Algebraic Geometry with Relation ≠
    A. N. Shevlyakov
    [J]. Algebra and Logic, 2016, 55 : 330 - 339
  • [3] Dimension in universal algebraic geometry
    E. Yu. Daniyarova
    A. G. Myasnikov
    V. N. Remeslennikov
    [J]. Doklady Mathematics, 2014, 90 : 450 - 452
  • [4] Universal Algebraic Geometry with Relation ≠
    Shevlyakov, A. N.
    [J]. ALGEBRA AND LOGIC, 2016, 55 (04) : 330 - 339
  • [5] Dimension in universal algebraic geometry
    Daniyarova, E. Yu.
    Myasnikov, A. G.
    Remeslennikov, V. N.
    [J]. DOKLADY MATHEMATICS, 2014, 90 (01) : 450 - 452
  • [6] On group automorphisms in universal algebraic geometry
    Shevlyakov, Artem N.
    [J]. GROUPS COMPLEXITY CRYPTOLOGY, 2019, 11 (02) : 115 - 121
  • [7] Compactness Conditions in Universal Algebraic Geometry
    P. Modabberi
    M. Shahryari
    [J]. Algebra and Logic, 2016, 55 : 146 - 172
  • [8] Universal Algebraic Geometry: Syntax and Semantics
    Gvaramia A.
    Plotkin B.
    Plotkin E.
    [J]. Journal of Mathematical Sciences, 2022, 262 (5) : 642 - 651
  • [9] Some notes on universal algebraic geometry
    Nikolova, DB
    Plotkin, BI
    [J]. ALGEBRA, 2000, : 237 - 261
  • [10] Compactness Conditions in Universal Algebraic Geometry
    Modabberi, P.
    Shahryari, M.
    [J]. ALGEBRA AND LOGIC, 2016, 55 (02) : 146 - 172