Random walks on edge-transitive graphs (II)

被引:14
|
作者
Palacios, JL
Renom, JM
Berrizbeitia, I
机构
[1] Univ Simon Bolivar, Dept Comp Cientif & Estadistic, Caracas, Venezuela
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[3] Univ Simon Bolivar, Dept Matemat, Caracas 1080, Venezuela
关键词
edge-transitive graphs; hitting times; Cayley graphs;
D O I
10.1016/S0167-7152(98)00241-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give formulas, in terms of the number of pure R-cycles, for the expected hitting times between vertices at distances greater than 1 for random walks on edge-transitive graphs, extending our prior results for neighboring vertices and also extending results of Devroye-Sbihi and Biggs concerning distance-regular graphs. We apply these formulas to a class of Cayley graphs and give explicit values for the expected hitting times. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 50 条
  • [1] Random walks on edge-transitive graphs (II) (vol 43, pg 25, 1999)
    Palacios, JL
    [J]. STATISTICS & PROBABILITY LETTERS, 2001, 53 (01) : 111 - 112
  • [2] The End Time of SIS Epidemics Driven by Random Walks on Edge-Transitive Graphs
    Daniel Figueiredo
    Giulio Iacobelli
    Seva Shneer
    [J]. Journal of Statistical Physics, 2020, 179 : 651 - 671
  • [3] The End Time of SIS Epidemics Driven by Random Walks on Edge-Transitive Graphs
    Figueiredo, Daniel
    Iacobelli, Giulio
    Shneer, Seva
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 179 (03) : 651 - 671
  • [4] Random walks on edge transitive graphs
    Palacios, JL
    Renom, JM
    [J]. STATISTICS & PROBABILITY LETTERS, 1998, 37 (01) : 29 - 34
  • [5] EDGE-TRANSITIVE PLANAR GRAPHS
    GRUNBAUM, B
    SHEPHARD, GC
    [J]. JOURNAL OF GRAPH THEORY, 1987, 11 (02) : 141 - 155
  • [6] Edge-transitive token graphs
    Zhang, Ju
    Zhou, Jin-Xin
    [J]. DISCRETE MATHEMATICS, 2022, 345 (11)
  • [7] Biprimitive edge-transitive pentavalent graphs
    Cai, Qi
    Lu, Zai Ping
    [J]. DISCRETE MATHEMATICS, 2024, 347 (04)
  • [8] Semiregular automorphisms of edge-transitive graphs
    Michael Giudici
    Primož Potočnik
    Gabriel Verret
    [J]. Journal of Algebraic Combinatorics, 2014, 40 : 961 - 972
  • [9] Classification of edge-transitive Nest graphs
    Kovacs, Istvan
    [J]. GRAPHS AND COMBINATORICS, 2023, 39 (04)
  • [10] Classification of edge-transitive Nest graphs
    István Kovács
    [J]. Graphs and Combinatorics, 2023, 39