Detecting differential binding of transcription factors with ChIP-seq

被引:53
|
作者
Liang, Kun [1 ,2 ]
Keles, Sunduz [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btr605
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Increasing number of ChIP-seq experiments are investigating transcription factor binding under multiple experimental conditions, for example, various treatment conditions, several distinct time points and different treatment dosage levels. Hence, identifying differential binding sites across multiple conditions is of practical importance in biological and medical research. To this end, we have developed a powerful and flexible program, called DBChIP, to detect differentially bound sharp binding sites across multiple conditions, with or without matching control samples. By assigning uncertainty measure to the putative differential binding sites, DBChIP facilitates downstream analysis. DBChIP is implemented in R programming language and can work with a wide range of sequencing file formats.
引用
收藏
页码:121 / 122
页数:2
相关论文
共 50 条
  • [1] Identifying differential transcription factor binding in ChIP-seq
    Wu, Dai-Ying
    Bittencourt, Danielle
    Stallcup, Michael R.
    Siegmund, Kimberly D.
    [J]. FRONTIERS IN GENETICS, 2015, 6
  • [2] ChIP-Seq Data Completion and Transcription Factors Binding Analyses
    Huang, De-Shuang
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 7 - 7
  • [3] A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments
    Teemu D Laajala
    Sunil Raghav
    Soile Tuomela
    Riitta Lahesmaa
    Tero Aittokallio
    Laura L Elo
    [J]. BMC Genomics, 10
  • [4] Detecting differential peaks in ChIP-seq signals with ODIN
    Allhoff, Manuel
    Sere, Kristin
    Chauvistre, Heike
    Lin, Qiong
    Zenke, Martin
    Costa, Ivan G.
    [J]. BIOINFORMATICS, 2014, 30 (24) : 3467 - 3475
  • [5] A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments
    Laajala, Teemu D.
    Raghav, Sunil
    Tuomela, Soile
    Lahesmaa, Riitta
    Aittokallio, Tero
    Elo, Laura L.
    [J]. BMC GENOMICS, 2009, 10
  • [6] Transcription Factor Binding Site Mapping Using ChIP-Seq
    Jaini, Suma
    Lyubetskaya, Anna
    Gomes, Antonio
    Peterson, Matthew
    Park, Sang Tae
    Raman, Sahadevan
    Schoolnik, Gary
    Galagan, James
    [J]. MICROBIOLOGY SPECTRUM, 2014, 2 (02):
  • [7] PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information
    Wu, Hao
    Ji, Hongkai
    [J]. PLOS ONE, 2014, 9 (03):
  • [8] ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells
    Ouyang, Zhengqing
    Zhou, Qing
    Wong, Wing Hung
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (51) : 21521 - 21526
  • [9] Statistical estimates of multiple transcription factors binding in the model plant genomes based on ChIP-seq data
    Dergilev, Arthur I.
    Orlova, Nina G.
    Dobrovolskaya, Oxana B.
    Orlov, Yuriy L.
    [J]. JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2022, 19 (01)
  • [10] Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome
    Karimzadeh, Mehran
    Hoffman, Michael M.
    [J]. GENOME BIOLOGY, 2022, 23 (01)