On modification of population-based search algorithms for convergence in stochastic combinatorial optimization

被引:0
|
作者
Chang, Hyeong Soo [1 ]
机构
[1] Sogang Univ, Dept Comp Sci & Engn, Seoul, South Korea
关键词
93E35; 74S60; 90C27;
D O I
10.1080/02331934.2014.883511
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Motivated by the work of Homem-De-Mello on modifying pure random search (PRS) into a convergent sample-based PRS for stochastic optimization, this paper considers two general methods of converting any given population-based algorithm into a convergent sample-based one for stochastic combinatorial optimization. The methods are based on controlling sampling process at time t by -switching and on including the current optimizer-estimate as a candidate in the selection process of -switching. Under appropriate conditions on the sequence and the given algorithm, we establish a probability one convergence of the resulting population-based algorithms.
引用
收藏
页码:1647 / 1655
页数:9
相关论文
共 50 条
  • [1] PopDMMO: A general framework of population-based stochastic search algorithms for dynamic multimodal optimization
    Lin, Xin
    Luo, Wenjian
    Xu, Peilan
    Qiao, Yingying
    Yang, Shengxiang
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2022, 68
  • [2] A partition-based convergence framework for population-based optimization algorithms
    Li, Xinxin
    Hua, Shuai
    Liu, Qunfeng
    Li, Yun
    [J]. INFORMATION SCIENCES, 2023, 627 : 169 - 188
  • [3] Towards a Population-Based Framework for Improving Stochastic Local Search Algorithms
    Araya, Ignacio
    Perez, Leslie
    Riff, Maria-Cristina
    [J]. PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, : 337 - 344
  • [4] Evolutionary and population-based methods versus constructive search strategies in dynamic combinatorial optimization
    Baykasoglu, Adil
    Ozsoydan, Fehmi B.
    [J]. INFORMATION SCIENCES, 2017, 420 : 159 - 183
  • [5] A Contour Method in Population-based Stochastic Algorithms
    Lin, Ying
    Zhang, Jun
    Lan, Lu-kai
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2388 - 2395
  • [6] Absorption in Model-based Search Algorithms for Combinatorial Optimization
    Wu, Zijun
    Kolonko, Michael
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 1744 - 1751
  • [7] On the Convergence of a Population-Based Global Optimization Algorithm
    Ş. İlker Birbil
    Shu-Cherng Fang
    Ruey-Lin Sheu
    [J]. Journal of Global Optimization, 2004, 30 : 301 - 318
  • [8] On the convergence of a population-based global optimization algorithm
    Birbil, SI
    Fang, SC
    Sheu, RL
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2004, 30 (2-3) : 301 - 318
  • [9] Population-based methods as a form of metaheuristic combinatorial optimization
    Populacijske metode kot oblika metahevristične kombinatorične optimizacije
    [J]. Korošec, P. (peter.korosec@ijs.si), 2005, Electrotechnical Society of Slovenia (72):
  • [10] Accelerate Population-Based Stochastic Search Algorithms With Memory for Optima Tracking on Dynamic Power Systems
    Zhu, Tao
    Luo, Wenjian
    Bu, Chenyang
    Yue, Lihua
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (01) : 268 - 277