Optimality Conditions for Approximate Pareto Solutions of a Nonsmooth Vector Optimization Problem with an Infinite Number of Constraints

被引:16
|
作者
Ta Quang Son [1 ]
Nguyen Van Tuyen [2 ]
Wen, Ching-Feng [3 ,4 ,5 ]
机构
[1] Saigon Univ, Fac Math & Applicat, Ho Chi Minh City, Vietnam
[2] Hanoi Pedag Univ, Dept Math, 2 Xuan Hoa, Phuc Yen, Vinh Phuc, Vietnam
[3] Ctr Fundamental Sci, Kaohsiung, Taiwan
[4] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung, Taiwan
[5] Kaohsiung Med Univ Hosp, Dept Med Res, Kaohsiung 80708, Taiwan
关键词
Approximate Pareto solutions; Optimality conditions; Clarke subdifferential; Semi-infinite vector optimization; Infinite vector optimization; VARIATIONAL PRINCIPLE; SEMIINFINITE; QUALIFICATIONS; THEOREMS; EXISTENCE; DUALITY; SYSTEMS;
D O I
10.1007/s40306-019-00358-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present some new necessary and sufficient optimality conditions in terms of Clarke subdifferentials for approximate Pareto solutions of a nonsmooth vector optimization problem which has an infinite number of constraints. As a consequence, we obtain optimality conditions for the particular cases of cone-constrained convex vector optimization problems and semidefinite vector optimization problems. Examples are given to illustrate the obtained results.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条