Sym3DNet: Symmetric 3D Prior Network for Single-View 3D Reconstruction

被引:3
|
作者
Siddique, Ashraf [1 ]
Lee, Seungkyu [1 ]
机构
[1] Kyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, Gyeonggi Do, South Korea
关键词
3D object reconstruction; reflection symmetry; deep learning; SIMULTANEOUS LOCALIZATION; SHAPE;
D O I
10.3390/s22020518
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The three-dimensional (3D) symmetry shape plays a critical role in the reconstruction and recognition of 3D objects under occlusion or partial viewpoint observation. Symmetry structure prior is particularly useful in recovering missing or unseen parts of an object. In this work, we propose Sym3DNet for single-view 3D reconstruction, which employs a three-dimensional reflection symmetry structure prior of an object. More specifically, Sym3DNet includes 2D-to-3D encoder-decoder networks followed by a symmetry fusion step and multi-level perceptual loss. The symmetry fusion step builds flipped and overlapped 3D shapes that are fed to a 3D shape encoder to calculate the multi-level perceptual loss. Perceptual loss calculated in different feature spaces counts on not only voxel-wise shape symmetry but also on the overall global symmetry shape of an object. Experimental evaluations are conducted on both large-scale synthetic 3D data (ShapeNet) and real-world 3D data (Pix3D). The proposed method outperforms state-of-the-art approaches in terms of efficiency and accuracy on both synthetic and real-world datasets. To demonstrate the generalization ability of our approach, we conduct an experiment with unseen category samples of ShapeNet, exhibiting promising reconstruction results as well.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Single-View 3D Reconstruction of Curves
    Fakih, Ali
    Wilser, Nicola
    Maillot, Yvan
    Cordier, Frederic
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT II, 2024, 14496 : 3 - 14
  • [2] Few-Shot Single-View 3D Reconstruction with Memory Prior Contrastive Network
    Xing, Zhen
    Chen, Yijiang
    Ling, Zhixin
    Zhou, Xiangdong
    Xiang, Yu
    COMPUTER VISION - ECCV 2022, PT I, 2022, 13661 : 55 - 70
  • [3] Learning View Priors for Single-view 3D Reconstruction
    Kato, Hiroharu
    Harada, Tatsuya
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9770 - 9779
  • [4] SS3DNet-AF: A Single-Stage, Single-View 3D Reconstruction Network with Attention-Based Fusion
    Shoukat, Muhammad Awais
    Sargano, Allah Bux
    Malyshev, Alexander
    You, Lihua
    Habib, Zulfiqar
    Applied Sciences (Switzerland), 2024, 14 (23):
  • [5] FaceScape: 3D Facial Dataset and Benchmark for Single-View 3D Face Reconstruction
    Zhu, Hao
    Yang, Haotian
    Guo, Longwei
    Zhang, Yidi
    Wang, Yanru
    Huang, Mingkai
    Wu, Menghua
    Shen, Qiu
    Yang, Ruigang
    Cao, Xun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14528 - 14545
  • [6] Cascaded Network-Based Single-View Bird 3D Reconstruction
    Su, Pei
    Zhao, Qijun
    Pan, Fan
    Gao, Fei
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT II, 2023, 14255 : 115 - 127
  • [7] A new single-view 3D pantograph reconstruction aided by prior CAD model
    Sun, Tiecheng
    Liu, Guanghui
    Peng, Jianping
    Meng, Fanman
    Liu, Shuaicheng
    Zhu, Shuyuan
    MEASUREMENT, 2021, 181
  • [8] Photometric single-view dense 3D reconstruction in endoscopy
    Batlle, Victor M.
    Montiel, J. M. M.
    Tardos, Juan D.
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 4904 - 4910
  • [9] Domain-Adaptive Single-View 3D Reconstruction
    Pinheiro, Pedro O.
    Rostamzadeh, Negar
    Ahn, Sungjin
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7637 - 7646
  • [10] Dynamic Domain Adaptation for Single-view 3D Reconstruction
    Yang, Cong
    Xie, Housen
    Tian, Haihong
    Yu, Yuanlong
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 3563 - 3570