Review of Energy Efficiency of the Gas Production Technologies From Gas Hydrate-Bearing Sediments

被引:14
|
作者
Yamamoto, Koji [1 ]
Nagakubo, Sadao [2 ]
机构
[1] Japan Oil Gas & Met Natl Corp JOGMEC, Tokyo, Japan
[2] Japan Methane Hydrate Operating Co Ltd JMH, Tokyo, Japan
关键词
gas hydrates; gas production; depressurization; deep water; energy return on investment; carbon capture and storage; METHANE-HYDRATE; NANKAI TROUGH; DEPRESSURIZATION; DISSOCIATION; OPERATIONS;
D O I
10.3389/fenrg.2021.741715
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Even in the carbon-neutral age, natural gas will be valuable as environment-friendly fuel that can fulfill the gap between the energy demand and supply from the renewable energies. Marine gas hydrates are a potential natural gas source, but gas production from deposits requires additional heat input owing to the endothermic nature of their dissociation. The amount of fuel needed to produce a unit of energy is important to evaluate energy from economic and environmental perspectives. Using the depressurization method, the value of the energy return on investment or invested (EROI) can be increased to more than 100 for the dissociation process and to approximately 10 or more for the project life cycle that is comparable to liquefied natural gas (LNG) import. Gas transportation through an offshore pipeline from the offshore production facility can give higher EROI than floating LNG; however, the latter has an advantage of market accessibility. If the energy conversion from methane to hydrogen or ammonia at the offshore facility and carbon capture and storage (CCS) can be done at the production site, problems of carbon dioxide emission and market accessibility can be solved, and energy consumption for energy conversion and CCS should be counted to estimate the value of the hydrate resources.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Simulation experiments on gas production from hydrate-bearing sediments
    GONG JianMing1
    2 Qingdao Institute of Marine Geology
    3 Geochemical Department
    4 Langfang Branch
    [J]. Science China Earth Sciences, 2009, (01) : 22 - 28
  • [2] Simulation experiments on gas production from hydrate-bearing sediments
    Gong JianMing
    Cao ZhiMin
    Chen JianWen
    Zhang Min
    Li Jin
    Yang GuiFang
    [J]. SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2009, 52 (01): : 22 - 28
  • [3] Simulation experiments on gas production from hydrate-bearing sediments
    JianMing Gong
    ZhiMin Cao
    JianWen Chen
    Min Zhang
    Jin Li
    GuiFang Yang
    [J]. Science in China Series D: Earth Sciences, 2009, 52 : 22 - 28
  • [4] Relative water and gas permeability for gas production from hydrate-bearing sediments
    Mahabadi, Nariman
    Jang, Jaewon
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2014, 15 (06): : 2346 - 2353
  • [5] Sand production model in gas hydrate-bearing sediments
    Uchida, Shun
    Klar, Assaf
    Yamamoto, Koji
    [J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2016, 86 : 303 - 316
  • [6] Gas Production from Hydrate-Bearing Sediments: The Role of Fine Particles
    Jung, J. W.
    Jang, J.
    Santamarina, J. C.
    Tsouris, C.
    Phelps, T. J.
    Rawn, C. J.
    [J]. ENERGY & FUELS, 2012, 26 (01) : 480 - 487
  • [7] Optimization of Gas Production from Hydrate-Bearing Sediments with Fluctuation Characteristics
    LI Yaobin
    XU Tianfu
    XIN Xin
    YU Han
    YUAN Yilong
    ZHU Huixing
    [J]. Journal of Ocean University of China., 2024, 23 (03) - 632
  • [8] Optimization of Gas Production from Hydrate-Bearing Sediments with Fluctuation Characteristics
    Li, Yaobin
    Xu, Tianfu
    Xin, Xin
    Yu, Han
    Yuan, Yilong
    Zhu, Huixing
    [J]. JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2024, 23 (03) : 618 - 632
  • [9] A geomechanical model for gas hydrate-bearing sediments
    Gai, Xuerui
    Sanchez, Marcelo
    [J]. ENVIRONMENTAL GEOTECHNICS, 2017, 4 (02): : 143 - 156
  • [10] Water and Gas Flows in Hydrate-Bearing Sediments
    Xu, Yue
    Seol, Yongkoo
    Jang, Jaewon
    Dai, Sheng
    [J]. GEOTECHNICAL FRONTIERS 2017: GEOTECHNICAL MATERIALS, MODELING, AND TESTING, 2017, (280): : 766 - 772