A POLYNOMIAL-TIME INTERIOR-POINT ALGORITHM FOR CONVEX QUADRATIC SEMIDEFINITE OPTIMIZATION

被引:5
|
作者
Bai, Y. Q. [1 ]
Wang, F. Y. [1 ]
Luo, X. W. [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Convex quadratic semidefinite optimization; interior-point algorithm; small-update method; iteration bound; polynomial-time; SDP;
D O I
10.1051/ro/2010016
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we propose a primal-dual interior-point algorithm for convex quadratic semidefinite optimization problem. The search direction of algorithm is defined in terms of a matrix function and the iteration is generated by full-Newton step. Furthermore, we derive the iteration bound for the algorithm with small-update method, namely, O(root n log n/epsilon), which is best-known bound so far.
引用
收藏
页码:251 / 265
页数:15
相关论文
共 50 条