NMR Study of AgInTe2 at Normal and High Pressures

被引:0
|
作者
Guehne, Robin [1 ]
Kattinger, Carsten [1 ]
Bertmer, Marko [1 ]
Welzmiller, Simon [2 ]
Oeckler, Oliver [2 ]
Haase, Juergen [1 ]
机构
[1] Univ Leipzig, Felix Bloch Inst Solid State Phys, D-04103 Leipzig, Germany
[2] Univ Leipzig, Fac Chem & Mineral, Inst Mineral Crystallog & Mat Sci, D-04275 Leipzig, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2022年 / 126卷 / 19期
关键词
NUCLEAR-MAGNETIC-RESONANCE; SOLID-SOLUTION SERIES; CHEMICAL-SHIFTS; INP; TRANSFORMATIONS; SEMICONDUCTORS;
D O I
10.1021/acs.jpcc.2c00575
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ternary semiconductor AgInTe2is a thermoelectric materialwith a chalcopyrite-type structure, which is believed to transform into a rocksalt-type structure under high pressure. Nuclear magnetic resonance (NMR) isconsidered to provide unique insight into material properties on interatomiclength scales, especially in the context of structural phase transitions. Here,115Inand125Te NMR analyses are used to study AgInTe2for ambient conditions andpressures up to 5 GPa. Magneticfield-dependent and magic angle spinning(MAS) experiments of125Te prove strongly enhanced internuclear couplings, aswell as a distribution of isotropic chemical shifts, suggesting a certain degree ofcation disorder. The indirect nuclear coupling is smaller for115In, as well as thechemical shift distribution in agreement with the crystal structure.115In NMR isfurther governed by a small quadrupolar interaction (nu Q approximate to 90 kHz) and showsan orders of magnitude faster nuclear relaxation in comparison to that of125Te.At a pressure of about 3GPa, the115In quadrupole interaction increases sharply to about 2400 kHz, indicating a phase transition to astructure with a well-defined though noncubic local symmetry, while the115In shift suggests no significant changes of the electronicstructure. The NMR signal is lost above about 5 GPa (at least up to about 10 GPa). However, upon releasing the pressure, a signal isrecovered that points to the reported metastable ambient pressure phase with a high degree of disorder.
引用
收藏
页码:8461 / 8466
页数:6
相关论文
共 50 条
  • [1] Synchrotron structural study of AgInTe2
    Díaz, M
    de Chalbaud, LM
    Sagredo, V
    Tinoco, T
    Pineda, C
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2000, 220 (01): : 281 - 284
  • [2] Phase transition in AgInTe2 under high pressure
    Bovornratanaraks, Thiti
    Kotmool, Komsilp
    McMahon, Malcolm I.
    Ruffolo, David J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C608 - C609
  • [3] High Pressure Structural Studies of AgInTe2
    Bovornratanaraks, T.
    Kotmool, K.
    Yoodee, K.
    McMahon, M. I.
    Ruffolo, D.
    INTERNATIONAL CONFERENCE ON HIGH PRESSURE SCIENCE AND TECHNOLOGY, JOINT AIRAPT-22 AND HPCJ-50, 2010, 215
  • [4] Electrical properties of AgInTe2
    Bellabarba, C
    MATERIALS LETTERS, 1998, 36 (5-6) : 299 - 302
  • [5] PHOTOELECTRICAL PROPERTIES OF AGINTE2
    SHUKLA, R
    KHURANA, P
    SRIVASTAVA, KK
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1991, 64 (04): : 389 - 400
  • [6] AGINTE2-3 - AS A METASTABLE MODIFICATION OF AGINTE2
    RANGE, KJ
    ENGERT, G
    WEISS, A
    ZEITSCHRIFT FUR NATURFORSCHUNG PART B-CHEMIE BIOCHEMIE BIOPHYSIK BIOLOGIE UND VERWANDTEN GEBIETE, 1969, B 24 (07): : 813 - &
  • [7] Designing for dopability in semiconducting AgInTe2
    Meschke, Vanessa
    Gomes, Lidia Carvalho
    Adamczyk, Jesse M. M.
    Ciesielski, Kamil M. M.
    Crawford, Caitlin M. M.
    Vinton, Haley
    Ertekin, Elif
    Toberer, Eric S. S.
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (11) : 3832 - 3840
  • [8] ELECTRICAL-PROPERTIES OF AGINTE2
    SHUKLA, R
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1993, 31 (12) : 894 - 898
  • [9] ANISOTROPIC THERMAL EXPANSIVITY OF THE CHALCOPYRITE AGINTE2
    KISTAIAH, P
    MURTHY, KS
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1985, 18 (05) : 861 - 872
  • [10] Fabrication and properties of AgInTe2 thin films
    I. V. Bodnar’
    V. F. Gremenok
    K. Bente
    Th. Doering
    W. Schmitz
    Inorganic Materials, 2000, 36 : 1000 - 1003