Hyers-Ulam Stability of Polynomial Equations

被引:8
|
作者
Bidkham, M. [1 ]
Mezerji, H. A. Soleiman [1 ]
Gordji, M. Eshaghi [1 ]
机构
[1] Semnan Univ, Dept Math, Semnan, Iran
关键词
APPROXIMATELY LINEAR MAPPINGS; JC-ASTERISK-ALGEBRAS; FUNCTIONAL-EQUATIONS; RASSIAS STABILITY; BANACH-SPACES; HOMOMORPHISMS; DERIVATIONS; JENSEN;
D O I
10.1155/2010/754120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the Hyers-Ulam stability of the polynomial equation a(n)x(n) + a(n-1)x(n-1) + ... + a(1)x + a(0) = 0. We give an affirmative answer to a problem posed by Li and Hua (2009).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] HYERS-ULAM STABILITY OF A POLYNOMIAL EQUATION
    Li, Yongjin
    Hua, Liubin
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (02): : 86 - 90
  • [2] Hyers-Ulam stability for quantum equations
    Anderson, Douglas R.
    Onitsuka, Masakazu
    [J]. AEQUATIONES MATHEMATICAE, 2021, 95 (02) : 201 - 214
  • [3] HYERS-ULAM STABILITY FOR GEGENBAUER DIFFERENTIAL EQUATIONS
    Jung, Soon-Mo
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [4] Hyers-Ulam Stability of Power Series Equations
    Bidkham, M.
    Mezerji, H. A. Soleiman
    Gordji, M. Eshaghi
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [5] On Hyers-Ulam Stability of Monomial Functional Equations
    A. Gilányi
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1998, 68 : 321 - 328
  • [6] Hyers-Ulam Stability of Linear Differential Equations
    Murali, R.
    Selvan, A. Ponmana
    [J]. COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS: MODELS AND TECHNIQUES FOR INTELLIGENT SYSTEMS AND AUTOMATION, 2018, 844 : 183 - 192
  • [7] HYERS-ULAM STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS
    Chang, Jeongwook
    Chung, Jaeyoung
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 23 (04): : 567 - 575
  • [8] ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS
    Huang, Jinghao H
    Jung, Soon-Mo
    Li, Yongjin
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 685 - 697
  • [9] On Hyers-Ulam stability of monomial functional equations
    Gilanyi, A
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1998, 68 (1): : 321 - 328
  • [10] Hyers-Ulam stability of hypergeometric differential equations
    Abdollahpour, Mohammad Reza
    Rassias, Michael Th
    [J]. AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 691 - 698