Micromechanical modelling of the anisotropic creep behaviour of granular medium as a fourth-order fabric tensor

被引:0
|
作者
Wei, Wei [1 ]
Gu, Chongshi [1 ]
Guo, Xuyuan [2 ]
Gu, Shuitao [3 ]
机构
[1] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing, Peoples R China
[2] Yalong River Hydropower Dev Co, Chengdu, Peoples R China
[3] Chongqing Univ, Sch Civil Engn, 83 Shabei St, Chongqing 400045, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourth-order fabric tensor; micromechanics; anisotropic creep behaviour; Laplace-Carson transformation; granular media; EFFECTIVE ELASTIC-MODULI; PACKING;
D O I
10.1177/16878140211036127
中图分类号
O414.1 [热力学];
学科分类号
摘要
The main objective of the present work is to develop a micromechanics approach to predict the macroscopic anisotropic creep behaviour of granular media. To this end, the linear viscoelastic behaviour of the inter-particle interaction at contact is adopted, and the contact distribution is characterized by a fourth-order fabric tensor in the local scale. Then, fourth-order tensor fabric-based micromechanical approaches based on Voigt and Reuss localization assumptions are applied to granular media in the Laplace-Carson space. With help of the inverse Laplace-Carson transformation of these obtained models, the macroscopic anisotropic creep behaviour of granular media submitted to a constant external loading is examined. Finally, the obtained results by specializing the Burgers model into the obtained models are compared with the numerical simulations in the particle flow code (PFC2D) to illustrate the validation and the accuracy of the analytical models for the macroscopic anisotropic creep behaviour of granular media.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Anisotropic hyperelasticity using a fourth-order structural tensor approach
    O'Shea, D. J.
    Attard, M. M.
    Kellermann, D. C.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 198 : 149 - 169
  • [2] Micromechanical modelling of anisotropic non-linear elasticity of granular medium
    Emeriault, F
    Cambou, B
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (18) : 2591 - 2607
  • [3] A fourth-order degradation tensor for an anisotropic damage phase-field model
    Petrini, A. L. E. R.
    Esteves, C. L. C. S.
    Boldrini, J. L.
    Bittencourt, M. L.
    FORCES IN MECHANICS, 2023, 12
  • [4] A 3D fourth order fabric tensor approach of anisotropy in granular media
    Rahmoun, Jamila
    Kondo, Djimedo
    Millet, Olivier
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 46 (04) : 869 - 880
  • [5] Single-resonator fourth-order micromechanical disk filters
    Demirci, MU
    Nguyen, CTC
    MEMS 2005 MIAMI: TECHNICAL DIGEST, 2005, : 207 - 210
  • [6] Fourth-order tensor Riccati equations with the Einstein product
    Miao, Yun
    Wei, Yimin
    Chen, Zhen
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (10): : 1831 - 1853
  • [7] Elastic nonlinear behaviour of a granular medium: micromechanical approach
    Maalej, Yamen
    Dormieux, Luc
    Sanahuja, Julien
    COMPTES RENDUS MECANIQUE, 2007, 335 (08): : 461 - 466
  • [8] The global solution of anisotropic fourth-order Schrodinger equation
    Su, Hailing
    Guo, Cuihua
    ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [9] ON THE SCHRODINGER EQUATIONS WITH ISOTROPIC AND ANISOTROPIC FOURTH-ORDER DISPERSION
    Villamizar-Roa, Elder J.
    Banquet, Carlos
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [10] Fourth-order anisotropic diffusion equations for noise removal
    Jia, DY
    Huang, FG
    Wen, XF
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 994 - 997