Diabatic limit, eta invariants and Cauchy-Riemann manifolds of dimension 3

被引:8
|
作者
Biquard, Olivier
Herzlich, Marc
Rumin, Michel
机构
[1] Univ Strasbourg, CNRS, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] Univ Montpellier 2, CNRS, Inst Math Model Montpellier, F-34095 Montpellier, France
[3] Univ Paris Sud, CNRS, Lab Math Orsay, F-91405 Orsay, France
关键词
D O I
10.1016/j.ansens.2007.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We relate a recently introduced non-local invariant of compact strictly pseudoconvex Cauchy-Riemann (CR) manifolds of dimension 3 to various eta-invariants: on the one hand a renormalized eta-invariant appearing when considering a sequence of metrics converging to the CR structure by expanding. the size of the Reeb field; on the other hand the eta-invariant of the middle degree operator of the contact complex. We then provide explicit computations for transverse circle invariant CR structures on Seifert manifolds. This yields obstructions to filling a CR manifold by complex hyperbolic, Kahler-Einstein, or Einstein manifolds. (c) 2007 Elsevier Masson SAS.
引用
收藏
页码:589 / 631
页数:43
相关论文
共 50 条