Rotation-Based Scale Adaptive Moving Target Tracking Algorithm

被引:0
|
作者
Dai Yutong [1 ]
Chen Zhiguo [1 ]
Fu Yi [1 ,2 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Wu Xi Res Ctr Environm Sci & Engn, Wuxi 214153, Jiangsu, Peoples R China
关键词
image processing; correlation filter; in-plane rotation; scale change; model update;
D O I
10.3788/LOP202158.1210019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming at the problem of poor tracking effect of correlation filters in dealing with in-plane rotation and scale changes, this paper proposed a scale adaptive correlation filter target tracking algorithm with rotation characteristics based on ECO_HC (efficient convolution operators handcraft). Firstly, we train a scale and rotation filter, and then use the phase correlation algorithm to obtain the scale factor and rotation angle. Secondly, we adopt a dynamic adaptive update strategy for rotation and scale updating. Finally, in the position model update stage, we fuse the background information of front frames to enhance the stability of the template. Experimental data shows that our method is not only robust against in-plane rotation and scale changes, but also can meet real-time requirements.
引用
收藏
页数:9
相关论文
共 20 条
  • [1] Learning Discriminative Model Prediction for Tracking
    Bhat, Goutam
    Danelljan, Martin
    Van Gool, Luc
    Timofte, Radu
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6181 - 6190
  • [2] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [3] Danelljan M., 2014, BRIT MACH VIS C NOTT
  • [4] ECO: Efficient Convolution Operators for Tracking
    Danelljan, Martin
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6931 - 6939
  • [5] Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking
    Danelljan, Martin
    Robinson, Andreas
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 472 - 488
  • [6] Learning Spatially Regularized Correlation Filters for Visual Tracking
    Danelljan, Martin
    Hager, Gustav
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4310 - 4318
  • [7] Struck: Structured Output Tracking with Kernels
    Hare, Sam
    Golodetz, Stuart
    Saffari, Amir
    Vineet, Vibhav
    Cheng, Ming-Ming
    Hicks, Stephen L.
    Torr, Philip H. S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (10) : 2096 - 2109
  • [8] High-Speed Tracking with Kernelized Correlation Filters
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) : 583 - 596
  • [9] Object Tracking by Reconstruction with View-Specific Discriminative Correlation Filters
    Kart, Ugur
    Lukezic, Alan
    Kristan, Matej
    Kamarainen, Joni-Kristian
    Matas, Jiri
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1339 - 1348
  • [10] SiamRPN plus plus : Evolution of Siamese Visual Tracking with Very Deep Networks
    Li, Bo
    Wu, Wei
    Wang, Qiang
    Zhang, Fangyi
    Xing, Junliang
    Yan, Junjie
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4277 - 4286