Exchange Reactions Alter Molecular Speciation of Gaseous Oxidized Mercury

被引:9
|
作者
Mao, Na [1 ]
Khalizov, Alexei [1 ,2 ]
机构
[1] New Jersey Inst Technol, Dept Chem & Environm Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Chem & Mat Engn, Newark, NJ 07102 USA
来源
ACS EARTH AND SPACE CHEMISTRY | 2021年 / 5卷 / 08期
基金
美国国家科学基金会;
关键词
HgBrCl; GOM analysis; mass spectrometry; cation exchange membranes; Raman; MATRIX-ISOLATED BINARY; KCL-COATED DENUDERS; ATMOSPHERIC MERCURY; RAMAN-SPECTRA; AMBIENT AIR; VIBRATIONAL FREQUENCIES; HYDROCHLORIC-ACID; OXIDATION; HALIDES; HG;
D O I
10.1021/acsearthspacechem.1c00178
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The knowledge of speciation of gaseous oxidized mercury (GOM) is crucial for understanding the atmospheric mercury chemistry and global cycle. Because of the low atmospheric abundance of GOM, its chemical analysis requires preconcentration and often involves the use of collection substrates, such as KCl, various adsorbents, or membranes. GOM molecules adsorbed on substrates can exchange ligands with the substrate material, each other, or other coadsorbed atmospheric chemicals, altering the composition of GOM and ultimately leading to speciation biases. Here, we investigated exchange reactions involving GOM surrogates HgBr2, HgCl2, and Hg(NO3)(2) and different forms of Cl- (as KCl, NH4Cl, and HCl). The reactions were studied in aqueous solutions and on surfaces, and the products were analyzed in the gas phase (by ion drift-chemical ionization mass spectrometry), in solution (by electrospray ionization-mass spectrometry), and on surface (by Raman microscopy). In all cases, we observed a rapid formation of exchange products HgBrCl and HgCl2, which readily volatilized not only upon heating, but also often at room temperature, depending on substrate adsorptivity. We propose that a similar exchange may occur both on atmospheric aerosols and during analysis, where the original GOM species (e.g., BrHgONO and BrHgOOH) would react on surfaces/particles with each other and atmospherically abundant trace species to form other mercury(II) chemicals. For example, a readily volatilizable HgCl2 can be produced through the exchange with chloride.
引用
收藏
页码:1842 / 1853
页数:12
相关论文
共 50 条
  • [1] Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition
    Saiz-Lopez, Alfonso
    Sitkiewicz, Sebastian P.
    Roca-Sanjuan, Daniel
    Oliva-Enrich, Josep M.
    Davalos, Juan Z.
    Notario, Rafael
    Jiskra, Martin
    Xu, Yang
    Wang, Feiyue
    Thackray, Colin P.
    Sunderland, Elsie M.
    Jacob, Daniel J.
    Travnikov, Oleg
    Cuevas, Carlos A.
    Acuna, A. Ulises
    Rivero, Daniel
    Plane, John M. C.
    Kinnison, Douglas E.
    Sonke, Jeroen E.
    NATURE COMMUNICATIONS, 2018, 9
  • [2] Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition
    Alfonso Saiz-Lopez
    Sebastian P. Sitkiewicz
    Daniel Roca-Sanjuán
    Josep M. Oliva-Enrich
    Juan Z. Dávalos
    Rafael Notario
    Martin Jiskra
    Yang Xu
    Feiyue Wang
    Colin P. Thackray
    Elsie M. Sunderland
    Daniel J. Jacob
    Oleg Travnikov
    Carlos A. Cuevas
    A. Ulises Acuña
    Daniel Rivero
    John M. C. Plane
    Douglas E. Kinnison
    Jeroen E. Sonke
    Nature Communications, 9
  • [3] Author Correction: Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition
    Alfonso Saiz-Lopez
    Sebastian P. Sitkiewicz
    Daniel Roca-Sanjuán
    Josep M. Oliva-Enrich
    Juan Z. Dávalos
    Rafael Notario
    Martin Jiskra
    Yang Xu
    Feiyue Wang
    Colin P. Thackray
    Elsie M. Sunderland
    Daniel J. Jacob
    Oleg Travnikov
    Carlos A. Cuevas
    A. Ulises Acuña
    Daniel Rivero
    John M. C. Plane
    Douglas E. Kinnison
    Jeroen E. Sonke
    Nature Communications, 13
  • [4] Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition (vol 9, 4796, 2018)
    Saiz-Lopez, Alfonso
    Sitkiewicz, Sebastian P.
    Roca-Sanjuan, Daniel
    Oliva-Enrich, Josep M.
    Davalos, Juan Z.
    Notario, Rafael
    Jiskra, Martin
    Xu, Yang
    Wang, Feiyue
    Thackray, Colin P.
    Sunderland, Elsie M.
    Jacob, Daniel J.
    Travnikov, Oleg
    Cuevas, Carlos A.
    Acuna, A. Ulises
    Rivero, Daniel
    Plane, John M. C.
    Kinnison, Douglas E.
    Sonke, Jeroen E.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Factors impacting gaseous mercury speciation in postcombustion
    Zhou, Jinsong
    Luo, Zhongyang
    Hu, Changxing
    Cen, Kefa
    ENERGY & FUELS, 2007, 21 (02) : 491 - 495
  • [6] Validating an Evaporative Calibrator for Gaseous Oxidized Mercury
    Gacnik, Jan
    Zivkovic, Igor
    Ribeiro Guevara, Sergio
    Jacimovic, Radojko
    Kotnik, Joze
    Horvat, Milena
    SENSORS, 2021, 21 (07)
  • [7] Application of traceable calibration for gaseous oxidized mercury in air
    Nair, Sreekanth Vijayakumaran
    Gacnik, Jan
    Zivkovic, Igor
    Andron, Teodor Daniel
    Ali, Saeed Waqar
    Kotnik, Joze
    Horvat, Milena
    ANALYTICA CHIMICA ACTA, 2024, 1288
  • [8] Dry deposition of gaseous oxidized mercury in Western Maryland
    Castro, Mark S.
    Moore, Chris
    Sherwell, John
    Brooks, Steve B.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2012, 417 : 232 - 240
  • [9] A passive sampler for ambient gaseous oxidized mercury concentrations
    Lyman, Seth N.
    Gustin, Mae S.
    Prestbo, Eric M.
    ATMOSPHERIC ENVIRONMENT, 2010, 44 (02) : 246 - 252
  • [10] Mercury speciation in natural waters: Measurement of dissolved gaseous mercury with a field analyzer
    S.E. Lindberg
    A.F. Vette
    C. Miles
    F. Schaedlich
    Biogeochemistry, 2000, 48 : 237 - 259