Improved proximal ADMM with partially parallel splitting for multi-block separable convex programming

被引:5
|
作者
Sun, Min [1 ,2 ]
Sun, Hongchun [3 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Shandong, Peoples R China
[2] Qufu Normal Univ, Sch Management Sci, Rizhao Campus, Qufu 276800, Shandong, Peoples R China
[3] Linyi Univ, Sch Sci, Linyi 276005, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Alternating direction method of multipliers; Multi-block separable convex programming; Global convergence; ALTERNATING DIRECTION METHODS; GRAPHICAL MODEL SELECTION; ROBUST PCA; MINIMIZATION; OPTIMIZATION; CONVERGENCE; ALGORITHMS; RANK;
D O I
10.1007/s12190-017-1138-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a type of multi-block separable convex programming raised in machine learning and statistical inference, we propose a proximal alternating direction method of multiplier with partially parallel splitting, which has the following nice properties: (1) to alleviate the weight of the proximal terms, the restrictions imposed on the proximal parameters are relaxed substantively; (2) to maintain the inherent structure of the primal variables x(i) (i = 1, 2, . . . , m), the relaxation parameter gamma is only attached to the update formula of the dual variable lambda. For the resulted method, we establish its global convergence and worst-case O(1/t) convergence rate in an ergodic sense, where t is the iteration counter. Finally, three numerical examples are given to illustrate the theoretical results obtained.
引用
收藏
页码:151 / 181
页数:31
相关论文
共 50 条
  • [1] Improved proximal ADMM with partially parallel splitting for multi-block separable convex programming
    Min Sun
    Hongchun Sun
    [J]. Journal of Applied Mathematics and Computing, 2018, 58 : 151 - 181
  • [2] A Hybrid type ADMM for Multi-Block Separable Convex Programming
    Wang, Bin
    Fang, Jun
    [J]. 2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [3] Convergent prediction-correction-based ADMM for multi-block separable convex programming
    Chang, Xiaokai
    Liu, Sanyang
    Zhao, Pengjun
    Li, Xu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 335 : 270 - 288
  • [4] A multi-parameter parallel ADMM for multi-block linearly constrained separable convex optimization
    Shen, Yuan
    Gao, Qianming
    Yin, Xue
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 171 : 369 - 388
  • [5] A relaxed proximal ADMM method for block separable convex programming
    Min Sun
    Yiju Wang
    [J]. Numerical Algorithms, 2024, 95 : 575 - 603
  • [6] A relaxed proximal ADMM method for block separable convex programming
    Sun, Min
    Wang, Yiju
    [J]. NUMERICAL ALGORITHMS, 2024, 95 (02) : 575 - 603
  • [7] Inertial Proximal ADMM for Separable Multi-Block Convex Optimizations and Compressive Affine Phase Retrieval
    Peng LI
    Wen Gu CHEN
    Qi Yu SUN
    [J]. Acta Mathematica Sinica,English Series, 2023, (08) : 1459 - 1496
  • [8] Inertial Proximal ADMM for Separable Multi-Block Convex Optimizations and Compressive Affine Phase Retrieval
    Peng Li
    Wen Gu Chen
    Qi Yu Sun
    [J]. Acta Mathematica Sinica, English Series, 2023, 39 : 1459 - 1496
  • [9] Inertial Proximal ADMM for Separable Multi-Block Convex Optimizations and Compressive Affine Phase Retrieval
    Li, Peng
    Chen, Wen Gu
    Sun, Qi Yu
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (08) : 1459 - 1496
  • [10] A proximal partially parallel splitting method for separable convex programs
    Wang, Kai
    Desai, Jitamitra
    He, Hongjin
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (01): : 39 - 68