The Ramsey number r(K5 - P3, K5)

被引:0
|
作者
Boza, Luis [1 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 1, Seville, Spain
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
关键词
DIAGONAL NUMBERS; GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For two given graphs G(1) and G(2), the Ramsey number r(G(1), G(2)) is the smallest integer n such that for any graph G of order n, either G contains G(1) or the complement of G contains G(2). Let K-m denote a complete graph of order m and K-n - P-3 a complete graph of order n without two incident edges. In this paper, we prove that r(K-5 - P-3, K-5) = 25 without help of computer algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Gallai-Ramsey number for K5
    Magnant, Colton
    Schiermeyer, Ingo
    JOURNAL OF GRAPH THEORY, 2022, 101 (03) : 455 - 492
  • [2] The Ramsey Numbers r(K5 - 2K2,2K3), r(K5 - E, 2X3), and r(K5,2K3)
    Krone, Martin
    Mengersen, Ingrid
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 81 : 257 - 260
  • [3] Ramsey数r(K5,nK3)
    曾唯斌
    华南师范大学学报(自然科学版), 1983, (02) : 25 - 29
  • [4] The planar Ramsey number PR(K4-e, K5)
    Sun Yongqi
    Yang Yuansheng
    Lin Xiaohui
    Qiao Jing
    DISCRETE MATHEMATICS, 2007, 307 (01) : 137 - 142
  • [5] The theta-complete graph Ramsey number r(θk, K5); k = 7, 8, 9
    Jaradat, A. M. M.
    Baniabedalruhman, A.
    Bataineh, M. S.
    Jaradat, M. M. M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 614 - 620
  • [6] The planar Ramsey number for C4 and K5 is 13
    Bielak, H
    Gorgol, I
    DISCRETE MATHEMATICS, 2001, 236 (1-3) : 43 - 51
  • [7] R(C6, K5)=21 and R(C7, K5)=25
    Sheng, YJ
    Ru, HY
    Min, ZK
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (04) : 561 - 567
  • [8] K5公寓
    Reiulf D.Ramstad
    Espen Surnevik
    Sunniva Neuenkirchen Rosenberg
    Anders TjФnneland
    中国建筑装饰装修, 2011, (02) : 34 - 41
  • [9] A LOWER BOUND FOR R(K5-E,K5)
    EXOO, G
    UTILITAS MATHEMATICA, 1990, 38 : 187 - 188
  • [10] Optimal orientations of P3 X K5 and C8 X K3
    Lakshmi, R.
    ARS COMBINATORIA, 2015, 120 : 33 - 38