Explosion propagation in a dust removal pipeline under dust collector explosion

被引:24
|
作者
Pang, Lei [1 ,2 ]
Cao, Jiaojiao [1 ]
Xiao, Qiuping [3 ]
Yang, Kai [1 ,2 ]
Shi, Long [4 ]
机构
[1] Beijing Inst Petrochem Technol, Sch Safety Engn, Beijing 102617, Peoples R China
[2] Beijing Acad Safety Engn & Technol, Beijing 102617, Peoples R China
[3] Shanghai Res Inst Chem Ind, Shanghai 200062, Peoples R China
[4] RMIT Univ, Sch Engn, Civil & Infrastruct Engn, Melbourne, Vic 3004, Australia
关键词
Dust explosion; Dust collector; Venting; Dust removal pipeline; Explosion shockwave; Flame propagation; VENT DUCTS; SIMULATIONS; VESSELS;
D O I
10.1016/j.jlp.2021.104662
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The shockwave and high-temperature flame of dust explosion in the dust collector are often transmitted through the dust removal pipeline, and then cause secondary harm. In this study, the dust explosion propagation in a typical dry dust collector connected with dust removal pipelines was studied by CFD. The impacts of static activation pressure of the pressure relief panels on the explosion propagation were also addressed. The dust explosion propagation in the dust removal pipeline showed multiple accelerated combustion processes and severe pressure shocks. The explosion pressure and temperature first increase and then decrease along with the pipeline. Under a higher static activation pressure, the maximum explosion pressure along with the pipeline increases by 144%, where the average velocity of the dust propagation, dust consumption, pressure shock wave, and flame propagation increase by 82.2%, 32.1%, 25.3%, and 70.1%, respectively. When the static activation pressure increases from 0.01 MPa by more than 25%, the changes of the dust explosion pressure and flame propagation in the pipeline are observed limited. The explosion-proof valve should be set between 5 m and 10 m in the dust removal pipeline. And the lower the static activation pressure, the closer the explosion-proof valve. This research provides a scientific basis for the effective control of dust explosion disasters in dust removal systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The influence of pipeline deposited dust on the explosion propagation of dust collector
    Pang, Lei
    Jin, Xiao
    Li, Gongfang
    Li, Tiannan
    Jin, Longzhe
    Lv, Pengfei
    [J]. POWDER TECHNOLOGY, 2024, 434
  • [2] Dust collector explosion prevention and control
    Going, John E.
    Lombardo, Tony
    [J]. PROCESS SAFETY PROGRESS, 2007, 26 (02) : 164 - 176
  • [3] Dust explosion propagation and isolation
    Taveau, Jerome
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2017, 48 : 320 - 330
  • [4] Research on the explosion vent external composite disaster induced by dust explosion inside the dust collector
    Pang, Lei
    Liu, Jiqing
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2024, 91
  • [5] Influences of a Pipeline?s Bending Angle on the Propagation Law of Coal Dust Explosion Induced by Gas Explosion
    Zhang, Leilin
    Yang, Qianyi
    Shi, Biming
    Niu, Yihui
    Zhong, Zheng
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2021, 193 (05) : 798 - 811
  • [6] Research on law and mechanism of dust explosion in bag type dust collector
    Li, Xinyu
    Chen, Haiyan
    Zhang, Yansong
    Zhang, Xingxu
    Li, Runzhi
    [J]. ADVANCED POWDER TECHNOLOGY, 2022, 33 (06)
  • [7] Flame propagation characteristics and explosion behaviors of aluminum dust explosions in a horizontal pipeline
    Zhang, Shulin
    Bi, Mingshu
    Yang, Mingrui
    Gan, Bo
    Jiang, Haipeng
    Gao, Wei
    [J]. POWDER TECHNOLOGY, 2020, 359 : 172 - 180
  • [8] Dust explosion
    Loch, R
    [J]. ZEITSCHRIFT DES VEREINES DEUTSCHER INGENIEURE, 1929, 73 : 247 - 249
  • [9] Flame Characteristics in a Coal Dust Explosion Induced by a Methane Explosion in a Horizontal Pipeline
    Lin, Song
    Liu, Zhentang
    Wang, Zhirong
    Qian, Jifa
    Gu, Zhoujie
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2022, 194 (03) : 622 - 635
  • [10] Experimental Research on Coal Dust Explosion Propagation
    Duan Zhenwei
    Jing Guoxun
    Zhang Di
    Cheng Lei
    [J]. PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL. VIII, PTS A AND B, 2010, 8 : 1058 - 1063