Life cycle energy-economy-environmental evaluation of coal-based CLC power plant vs. IGCC, USC and oxy-combustion power plants with/without CO2 capture

被引:33
|
作者
Zhao, Ying-jie [1 ,3 ]
Duan, Yuan-yuan [1 ,3 ]
Liu, Qian [1 ]
Cui, Yang [1 ,3 ]
Mohamed, Usama [4 ]
Zhang, Yu-ke [1 ,3 ]
Ren, Zhi-li [1 ]
Shao, Yi-feng [1 ]
Yi, Qun [2 ,3 ]
Shi, Li-juan [2 ,3 ]
Nimmo, William [4 ]
机构
[1] Taiyuan Univ Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan 030024, Peoples R China
[2] Wuhan Inst Technol, Minist Educ, Key Lab Green Chem Engn Proc, Wuhan 430205, Peoples R China
[3] Taiyuan Univ Technol, Coll Environm Sci & Engn, Taiyuan 030024, Peoples R China
[4] Univ Sheffield, Energy 2050 Grp, Fac Engn, Sheffield S10 2TN, S Yorkshire, England
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Chemical looping combustion; Power plant; Life cycle assessment; CO2; capture; CHEMICAL LOOPING COMBUSTION; GASIFICATION; GENERATION; PERFORMANCE; EMISSIONS; SYSTEMS; FUEL; CCS; TAX;
D O I
10.1016/j.jece.2021.106121
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Coal-based chemical looping combustion (CLC) power plant presents itself as a promising technology due to its low energy penalty which is associated with its inherent CO2 capture process. However, most evaluations and comparisons (energy efficiency, economic, and environmental aspects) of the CLC power plant generally were focused on the power plant operation stage. Life cycle assessment (LCA) method with a "cradle to gate" model involving power plant construction, operation, and decommissioning stage,of coal-based power plants was established. Following that the resource consumption, energy consumption, environmental impact potential, and economic performance in the life cycle, were comprehensively compared between the coal-based CLC power plant and other plants such as IGCC, USC and oxy-combustion power plants with and without (w/o) CO2 capture, to find out the potential and deficiency of the coal-based CLC power plant in a life cycle perspective. Results showed that energy resource consumption accounts for the largest proportion of the total resource consumption (81.88-91.89%) in six coal-fired power plants. Among the environmental impact potentials, smoke and dust potential (SAP) has the highest value while eutrophication potential (EP) resulted in the lowest in six coal-based power plants. CLC presented resource depletion indicator, energy payback ratio and the total life cycle costs, at 4.79 x 10(-6) kWh/person/day, 3.22, and 0.138 $/kWh, respectively. These power plants were ranked from highest to lowest according to their sustainability as the following USC, CLC, IGCC, oxy-CCS, USC-CCS, and IGCC-CCS. However, CLC presents the best sustainability in all coal-based power plants with CO2 capture. The CLC power plant will be one of the most attractive options for carbon reduction in coal-based power systems, as the development of CLC technology further improves energy efficiency and economic performance. The results further demonstrated that the coal-based CLC power plant can solve the issues involving CO2 emission reduction and energy utilization in coal to power generation process from lifecycle viewpoint.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Coal Based Power Plants Using Oxy-Combustion for CO2 Capture: Pressurized Coal Combustion to Reduce Capture Penalty
    Soundararajan, Rengarajan
    Gundersen, Truls
    PRES 2012: 15TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2012, 29 : 187 - 192
  • [2] Coal based power plants using oxy-combustion for CO2 capture: Pressurized coal combustion to reduce capture penalty
    Soundararajan, Rengarajan
    Gundersen, Truls
    APPLIED THERMAL ENGINEERING, 2013, 61 (01) : 115 - 122
  • [3] Integrating the Compression Heat in Oxy-combustion Power Plants with CO2 Capture
    Fu, Chao
    Gundersen, Truls
    PRES 2012: 15TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2012, 29 : 781 - 786
  • [4] Heat Integration of an Oxy-Combustion Process for Coal-Fired Power Plants with CO2 Capture by Pinch Analysis
    Fu, Chao
    Gundersen, Truls
    PRES 2010: 13TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2010, 21 : 181 - 186
  • [5] Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture
    Kanniche, Mohamed
    Gros-Bonnivard, Rene
    Jaud, Philippe
    Valle-Marcos, Jose
    Amann, Jean-Marc
    Bouallou, Chakib
    APPLIED THERMAL ENGINEERING, 2010, 30 (01) : 53 - 62
  • [6] Integrating compressed CO2 energy storage in an oxy-coal combustion power plant with CO2 capture
    Huang, Qingxi
    Yao, Jinduo
    Hu, Yukun
    Liu, Shengchun
    Li, Hailong
    Sun, Qie
    ENERGY, 2022, 254
  • [7] Energy and environmental analyses: Indian coal and biomass based IGCC power plant integrated with microalgal CO2 capture
    Khan, Ashim Kumar
    Chowdhury, Ranjana
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2024, 49 (02):
  • [8] Energy and environmental analyses: Indian coal and biomass based IGCC power plant integrated with microalgal CO2 capture
    Ashim Kumar Khan
    Ranjana Chowdhury
    Sādhanā, 49
  • [9] Techno-economic analysis of CO2 conditioning processes in a coal based oxy-combustion power plant
    Fu, Chao
    Gundersen, Truls
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 : 419 - 427
  • [10] Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle
    Cormos, Calin-Cristian
    ENERGY, 2014, 78 : 665 - 673