Thermal-noise-limited underground interferometer CLIO

被引:14
|
作者
Agatsuma, Kazuhiro [1 ]
Arai, Koji [2 ]
Fujimoto, Masa-Katsu [2 ]
Kawamura, Seiji [2 ]
Kuroda, Kazuaki [1 ]
Miyakawa, Osamu [1 ]
Miyoki, Shinji [1 ]
Ohashi, Masatake [1 ]
Suzuki, Toshikazu [3 ]
Takahashi, Ryutaro [2 ]
Tatsumi, Daisuke [2 ]
Telada, Souichi [4 ]
Uchiyama, Takashi [1 ]
Yamamoto, Kazuhiro [5 ,6 ]
机构
[1] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan
[2] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan
[3] High Energy Accelerator Org, Tsukuba, Ibaraki 3050801, Japan
[4] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058563, Japan
[5] Leibniz Univ Hannover, Inst Gravitat Phys, D-30167 Hannover, Germany
[6] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
关键词
FREQUENCY STABILIZATION; LASER; VIBRATION;
D O I
10.1088/0264-9381/27/8/084022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report on the current status of CLIO (Cryogenic Laser Interferometer Observatory), which is a prototype interferometer for LCGT (large scale cryogenic gravitational-wave telescope). LCGT is a Japanese next-generation interferometric gravitational-wave detector featuring the use of cryogenic mirrors and a quiet underground site. The main purpose of CLIO is to demonstrate a reduction of the mirror thermal noise by cooling the sapphire mirrors. CLIO is located in an underground site of the Kamioka mine, 1000 m deep from the mountain top, to verify its advantages. After a few years of commissioning work, we have achieved a thermal-noise-limited sensitivity at room temperature. One of the main results of noise hunting was the elimination of thermal noise caused by a conductive coil holder coupled with a pendulum through magnets.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Thermal-noise-limited optical cavity
    Webster, S. A.
    Pugla, S.
    Millo, J.
    Oxborrow, M.
    Gill, P.
    2008 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS DIGEST, 2008, : 58 - +
  • [2] Thermal-noise-limited optical cavity
    Webster, S. A.
    Oxborrow, M.
    Pugla, S.
    Millo, J.
    Gill, P.
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [3] THERMAL-NOISE-LIMITED OPERATION OF DYNAMICAL GRAVITATIONAL DETECTORS
    FORWARD, RL
    BERMAN, D
    MILLER, LR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (03): : 513 - &
  • [4] Underground Cryogenic Laser Interferometer CLIO
    Miyoki, Shinji
    TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP2009), 2010, 203
  • [5] Thermal-noise-limited higher-order mode locking of a reference cavity
    Zeng, X. Y.
    Ye, Y. X.
    Shi, X. H.
    Wang, Z. Y.
    Deng, K.
    Zhang, J.
    Lu, Z. H.
    OPTICS LETTERS, 2018, 43 (08) : 1690 - 1693
  • [6] Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation
    Davila-Rodriguez, J.
    Baynes, F. N.
    Ludlow, A. D.
    Fortier, T. M.
    Leopardi, H.
    Diddams, S. A.
    Quinlan, F.
    OPTICS LETTERS, 2017, 42 (07) : 1277 - 1280
  • [7] Thermal-noise-limited ultra-stable laser operated at 698 nm
    Zhang, Lin-Bo
    Chen, Long
    Dong, Rui-Fang
    Liu, Tao
    Zhang, Shou-Gang
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [8] THERMAL-NOISE-LIMITED TRANSDUCTION OBSERVED IN MECHANOSENSORY RECEPTORS OF THE INNER-EAR
    DENK, W
    WEBB, WW
    PHYSICAL REVIEW LETTERS, 1989, 63 (02) : 207 - 210
  • [9] Compact, portable, thermal-noise-limited optical cavity with low acceleration sensitivity
    Kelleher, Megan L.
    Mclemore, Charles A.
    Lee, Dahyeon
    Davila-Rodriguez, Josue
    Diddams, Scott A.
    Quinlan, Franklyn
    OPTICS EXPRESS, 2023, 31 (07) : 11954 - 11965
  • [10] Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization
    Alnis, J.
    Schliesser, A.
    Wang, C. Y.
    Hofer, J.
    Kippenberg, T. J.
    Haensch, T. W.
    PHYSICAL REVIEW A, 2011, 84 (01):