Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata-Markov model

被引:84
|
作者
Lu, Yuting [1 ,2 ]
Wu, Penghai [1 ,2 ,3 ]
Ma, Xiaoshuang [1 ]
Li, Xinghua [4 ]
机构
[1] Anhui Univ, Sch Resources & Environm Engn, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Anhui Prov Key Lab Wetland Ecosyst Protect & Rest, Hefei 230601, Anhui, Peoples R China
[3] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Anhui, Peoples R China
[4] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Land use and land cover; Spatiotemporal data fusion; ESTARFM; CA-Markov; Prediction; TEMPORAL RESOLUTION; TIME-SERIES; LONG-TERM; MODIS; DYNAMICS; LULC; URBANIZATION; REFLECTANCE; SIMULATION; VEGETATION;
D O I
10.1007/s10661-019-7200-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The detection and prediction of land use/land cover (LULC) change is crucial for guiding land resource management, planning, and sustainable development. In the view of seasonal rhythm and phenological effect, detection and prediction would benefit greatly from LULC maps of the same seasons for different years. However, due to frequent cloudiness contamination, it is difficult to obtain same-season LULC maps when using existing remote sensing images. This study utilized the spatiotemporal data fusion (STF) method to obtain summer Landsat-scale images in Hefei over the past 30years. The Cellular Automata-Markov model was applied to simulate and predict future LULC maps. The results demonstrate the following: (1) the STF method can generate the same inter-annual interval summer Landsat-scale data for analyzing LULC change; (2) the fused data can improve the LULC detection and prediction accuracy by shortening the inter-annual interval, and also obtain LULC prediction results for a specific year; (3) the areas of cultivated land, water, and vegetation decreased by 33.14%, 2.03%, and 16.36%, respectively, and the area of construction land increased by 200.46% from 1987 to 2032. The urban expansion rate will reach its peak until 2020, and then slow down. The findings provide valuable information for urban planners to achieve sustainable development goals.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata–Markov model
    Yuting Lu
    Penghai Wu
    Xiaoshuang Ma
    Xinghua Li
    [J]. Environmental Monitoring and Assessment, 2019, 191
  • [2] Evaluation of Spatiotemporal Dynamics of Simulated Land Use/Cover in China Using a Probabilistic Cellular Automata-Markov Model
    Chen Xu
    Yu Shi-Xiao
    Zhang Ya-Ping
    [J]. PEDOSPHERE, 2013, 23 (02) : 243 - 255
  • [3] Evaluation of Spatiotemporal Dynamics of Simulated Land Use/Cover in China Using a Probabilistic Cellular Automata-Markov Model
    CHEN Xu
    YU Shi-Xiao
    ZHANG Ya-Ping
    [J]. Pedosphere, 2013, 23 (02) : 243 - 255
  • [4] Scenario-Based Land Use and Land Cover Change Detection and Prediction Using the Cellular Automata-Markov Model in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia
    Belay, Haile
    Melesse, Assefa M.
    Tegegne, Getachew
    [J]. LAND, 2024, 13 (03)
  • [5] Model of Land Cover Change Prediction in West Java']Java Using Cellular Automata-Markov Chain (CA-MC)
    Virtriana, Riantini
    Sumarto, Irawan
    Deliar, Albertus
    Pasaribu, Udjianna S.
    Taufik, Moh.
    [J]. 4TH INTERNATIONAL SYMPOSIUM ON EARTHQUAKE AND DISASTER MITIGATION 2014 (ISEDM 2014), 2015, 1658
  • [6] Land Use and Land Cover Change Monitoring and Prediction of a UNESCO World Heritage Site: Kaziranga Eco-Sensitive Zone Using Cellular Automata-Markov Model
    Nath, Nityaranjan
    Sahariah, Dhrubajyoti
    Meraj, Gowhar
    Debnath, Jatan
    Kumar, Pankaj
    Lahon, Durlov
    Chand, Kesar
    Farooq, Majid
    Chandan, Pankaj
    Singh, Suraj Kumar
    Kanga, Shruti
    [J]. LAND, 2023, 12 (01)
  • [7] Assessment of Uncertainties in Modelling Land Use Change with an Integrated Cellular Automata-Markov Chain Model
    Palmate, Santosh S.
    Wagner, Paul D.
    Fohrer, Nicola
    Pandey, Ashish
    [J]. ENVIRONMENTAL MODELING & ASSESSMENT, 2022, 27 (02) : 275 - 293
  • [8] Spatio-temporal prediction of land use and land cover change in Bahi (Manyoni) Catchment, Tanzania, using multilayer perceptron neural network and cellular automata-Markov chain model
    Naima A. M. Hersi
    Deogratias M. M. Mulungu
    Joel Nobert
    [J]. Environmental Monitoring and Assessment, 2024, 196
  • [9] Spatio-temporal prediction of land use and land cover change in Bahi (Manyoni) Catchment, Tanzania, using multilayer perceptron neural network and cellular automata-Markov chain model
    Hersi, Naima A. M.
    Mulungu, Deogratias M. M.
    Nobert, Joel
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (01)
  • [10] Simulation of future forest and land use/cover changes (2019-2039) using the cellular automata-Markov model
    Aksoy, Hasan
    Kaptan, Sinan
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (04) : 1183 - 1202