Radar target classification using multiple perspectives

被引:43
|
作者
Vespe, M. [1 ]
Baker, C. J. [1 ]
Griffiths, H. D. [1 ]
机构
[1] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
来源
IET RADAR SONAR AND NAVIGATION | 2007年 / 1卷 / 04期
关键词
D O I
10.1049/iet-rsn:20060049
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of radar target classification is examined for the case when more than one perspective or viewing angle of the target is available to the sensor. Using full-scale target signature measurements as the source data, it is shown how, for the first time, multiple perspectives enhance the classification performance. Indeed this is the case even if only one additional perspective is available for exploitation. Further, we explore the classification performance both as a function of the number of perspectives and of the signal to noise ratio. Three approaches to high range resolution profile multi-perspective classification have been implemented. This removes any possible bias that could be introduced by a single individual classifier. The results show, for all three, a consistent improvement in the classification performance, as the number of perspectives is increased. The techniques employed also provide considerable insight into the classification process highlighting the degree of complexity of this extremely challenging problem.
引用
收藏
页码:300 / 307
页数:8
相关论文
共 50 条
  • [1] Target classification using radar range Profiles
    Dommermuth, F
    FREQUENZ, 1996, 50 (7-8) : 157 - 164
  • [2] Radar Target Classification Using DOA Information
    Jouny, Ismail
    2013 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2013, : 178 - 178
  • [3] Tumor Classification Using Radar Target Signatures
    Conceicao, R. C.
    O'Halloran, M.
    Byrne, D.
    Jones, E.
    Glavin, M.
    PIERS 2010 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 346 - 349
  • [4] Radar Target Classification Using Morphological Image Processing
    Jackson, Julie Ann
    Brady, Patrick
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XVIII, 2011, 8051
  • [5] Radar Target Classification Using the Relevance Vector Machine
    Cho, Hoonkyung
    Chun, Joohwan
    Song, Sungchan
    Jung, Sangwon
    2014 IEEE RADAR CONFERENCE, 2014, : 1333 - 1336
  • [6] Target Classification Using Passive Radar ISAR Imagery
    Jarabo-Amores, Pilar
    Giusti, Elisa
    Rosa-Zurera, Manuel
    Bacci, Alessio
    Capria, Amerigo
    Mata-Moya, David
    2017 EUROPEAN RADAR CONFERENCE (EURAD), 2017, : 155 - 158
  • [7] Radar target classification using compressively sensed features
    Jouny, Ismail
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVI, 2017, 10200
  • [8] Radar target classification method with reduced aspect dependency and improved noise performance using multiple signal classification algorithm
    Secmen, M.
    Turhan-Sayan, G.
    IET RADAR SONAR AND NAVIGATION, 2009, 3 (06): : 583 - 595
  • [9] Joint passive radar tracking and target classification using radar cross section
    Herman, SM
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2003, 2003, 5204 : 402 - 417
  • [10] Target estimation using MIMO radar with multiple subcarriers
    Jiang, Min
    Huang, Jianguo
    Jin, Yong
    Han, Jing
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2012, 23 (01) : 57 - 62