An analog of the Feigin-Frenkel homomorphism for double loop algebras

被引:3
|
作者
Young, Charles [1 ]
机构
[1] Univ Hertfordshire, Dept Phys Astron & Math, Coll Lane, Hatfield AL10 9AB, Herts, England
关键词
Vertex algebra; Wakimoto construction; Feigin-Frenkel homomorphism; CHIRAL DIFFERENTIAL-OPERATORS; KAC-MOODY ALGEBRAS; GAUDIN MODEL; ZETA-VALUES; AFFINE; REPRESENTATIONS; GERBES; REALIZATIONS; MODULES; OPERS;
D O I
10.1016/j.jalgebra.2021.07.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a homomorphism of vertex algebras, from the vacuum Verma module over the loop algebra of an untwisted affine algebra, whose construction is analogous to that of the Feigin-Frenkel homomorphism from the vacuum Verma module at critical level over an affine algebra. (C) 2021 Published by Elsevier Inc.
引用
收藏
页码:1 / 76
页数:76
相关论文
共 18 条