REVERSE ORBIFOLD CONSTRUCTION AND UNIQUENESS OF HOLOMORPHIC VERTEX OPERATOR ALGEBRAS

被引:9
|
作者
Lam, Ching Hung [1 ]
Shimakura, Hiroki [2 ,3 ]
机构
[1] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[2] Natl Ctr Theoret Sci Taiwan, Taipei, Taiwan
[3] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
关键词
MODULAR-INVARIANCE; TRACE FUNCTIONS; REPRESENTATIONS; CLASSIFICATION;
D O I
10.1090/tran/7887
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we develop a general technique for proving the uniqueness of holomorphic vertex operator algebras based on the orbifold construction and its "reverse" process. As an application, we prove that the structure of a strongly regular holomorphic vertex operator algebra of central charge 24 is uniquely determined by its weight 1 Lie algebra if the Lie algebra has the type E(6,3)G(2,1)(3), A(2,3)(6), or A(5,3)D(4,3)A(1,1)(3).
引用
收藏
页码:7001 / 7024
页数:24
相关论文
共 50 条
  • [1] Orbifold Construction of Holomorphic Vertex Operator Algebras Associated to Inner Automorphisms
    Lam, Ching Hung
    Shimakura, Hiroki
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (03) : 803 - 841
  • [2] Orbifold Construction of Holomorphic Vertex Operator Algebras Associated to Inner Automorphisms
    Ching Hung Lam
    Hiroki Shimakura
    Communications in Mathematical Physics, 2016, 342 : 803 - 841
  • [3] Z2-ORBIFOLD CONSTRUCTION ASSOCIATED WITH (-1)-ISOMETRY AND UNIQUENESS OF HOLOMORPHIC VERTEX OPERATOR ALGEBRAS OF CENTRAL CHARGE 24
    Kawasetsu, Kazuya
    Lam, Ching Hung
    Lin, Xingjun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) : 1937 - 1950
  • [4] INERTIA GROUPS AND UNIQUENESS OF HOLOMORPHIC VERTEX OPERATOR ALGEBRAS
    CHING HUNG LAM
    HIROKI SHIMAKURA
    Transformation Groups, 2020, 25 : 1223 - 1268
  • [5] INERTIA GROUPS AND UNIQUENESS OF HOLOMORPHIC VERTEX OPERATOR ALGEBRAS
    Lam, Ching Hung
    Shimakura, Hiroki
    TRANSFORMATION GROUPS, 2020, 25 (04) : 1223 - 1268
  • [6] Construction and classification of holomorphic vertex operator algebras
    van Ekeren, Jethro
    Moller, Sven
    Scheithauer, Nils R.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 2020 (759): : 61 - 99
  • [7] Construction and classification of holomorphic vertex operator algebras
    van Ekeren, Jethro
    Moeller, Sven
    Scheithauer, Nils R.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 759 : 61 - 99
  • [8] Automorphism Groups and Uniqueness of Holomorphic Vertex Operator Algebras of Central Charge 24
    Betsumiya, Koichi
    Lam, Ching Hung
    Shimakura, Hiroki
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (03) : 1773 - 1810
  • [9] Automorphism Groups and Uniqueness of Holomorphic Vertex Operator Algebras of Central Charge 24
    Koichi Betsumiya
    Ching Hung Lam
    Hiroki Shimakura
    Communications in Mathematical Physics, 2023, 399 : 1773 - 1810
  • [10] Induced modules for orbifold vertex operator algebras
    Lam, CH
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2001, 53 (03) : 541 - 557