Batch Public Key Cryptosystem with batch multi-exponentiation

被引:3
|
作者
Wu, Qianhong [1 ,5 ,7 ]
Sun, Yang [1 ]
Qin, Bo [2 ]
Hu, Jiankun [3 ]
Liu, Weiran [1 ]
Liu, Jianwei [1 ]
Ding, Yong [4 ,6 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Renmin Univ China, Sch Informat, Key Lab Data Engn & Knowledge Engn, Minist Educ, Beijing, Peoples R China
[3] Univ New S Wales, Sch Engn & IT, Sydney, NSW 2052, Australia
[4] Guilin Univ Elect Technol, Guangxi Key Lab Cryptog & Informat Secur, Sch Math & Comp Sci, Guilin, Guangxi, Peoples R China
[5] Xidian Univ, State Key Lab Integrated Serv Networks, Xian, Peoples R China
[6] Shandong Univ, Minist Educ, Key Lab Cryptol Technol & Informat Secur, Jinan 250100, Peoples R China
[7] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
基金
北京市自然科学基金;
关键词
Modular exponentiation; Batch multi-exponentiation; Batch encryption; Batch decryption; Cramer-Shoup cryptosystem; Cloud security; MODULAR EXPONENTIATION; VERIFICATION; MULTIPLICATION; ALGORITHMS; SIGNATURES;
D O I
10.1016/j.future.2015.12.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A Public Key Cryptosystem (PKC) is a fundamental tool to protect data security. Most PKC schemes involve complicated operations, e.g., modular exponentiations, which are expensive for cloud environment where enormous data are collected from capability-limited devices, e.g., wireless sensors, mobile phones and tablets. To address this problem, this paper investigate how to reduce the laborious computations of a large number of exponentiations in public key encryption and decryption systems. Firstly, we propose algorithms to speed up batch multi-exponentiation in different configurations. Our algorithms improve the existing multi-exponentiation and batch single-base exponentiations by allowing a large number of multi-base exponentiations to be processed in batch. Secondly, we build a batch PKC scheme from the famous Cramer-Shoup cryptosystem by allowing batch encryption and batch decryption. For batch encryption, we exploit our proposed batch multi-exponentiation approach so that multiple messages can be encrypted in batch to reduce the computation overhead; and for batch decryption, we further incorporate techniques derived from batch signature verification so that the received ciphertexts can be decrypted in batch. We conduct thorough theoretical and experimental performance analysis of the proposed batch cryptosystem. The analyses show that the batch multi-exponentiation algorithms greatly accelerate calculation speed of the Cramer-Shoup system, compared with the naive implementations with existing multi-exponentiation approaches, by more than 40% in encryption and 80% in decryption. We also provide optimal batch size configurations in the case that some ciphertexts are erroneous. This work will help make PKC towards practical applications in the cloud environment. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 204
页数:9
相关论文
共 50 条
  • [1] Accelerating Oblivious Transfer with Batch Multi-exponentiation
    Sun, Yang
    Wu, Qianhong
    Liu, Jingwen
    Liu, Jianwei
    Huang, Xinyi
    Qin, Bo
    Hu, Wei
    INFORMATION SECURITY AND PRIVACY, PT I, 2016, 9722 : 310 - 326
  • [2] Combination in Advance Batch Multi-exponentiation on Elliptic Curve
    Tao, Rui
    Liu, Jianwei
    Su, Hang
    Sun, Yang
    Liu, Xiao
    2015 IEEE 2ND INTERNATIONAL CONFERENCE ON CYBER SECURITY AND CLOUD COMPUTING (CSCLOUD), 2015, : 411 - 416
  • [3] Fast parallel computation of multi-exponentiation for public key cryptosystems
    Chang, CC
    Lou, DC
    PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, 2003, : 955 - 958
  • [4] MULTI-EXPONENTIATION
    YEN, SM
    LAIH, CS
    LENSTRA, AK
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 1994, 141 (06): : 325 - 326
  • [5] Parallel algorithms for modular multi-exponentiation
    Borges, Fabio
    Lara, Pedro
    Portugal, Renato
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 406 - 416
  • [6] Improved batch exponentiation
    Chung, Byungchun
    Hur, Junbeom
    Kim, Heeyoul
    Hong, Seong-Min
    Yoon, Hyunsoo
    INFORMATION PROCESSING LETTERS, 2009, 109 (15) : 832 - 837
  • [7] Parallel computation of the multi-exponentiation for cryptosystems
    Chang, CC
    Lou, DC
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1997, 63 (1-2) : 9 - 26
  • [8] Fast parallel exponentiation algorithm for RSA public-key cryptosystem
    Wu, Chia-Long
    Lou, Der-Chyuan
    Lai, Jui-Chang
    Chang, Te-Jen
    INFORMATICA, 2006, 17 (03) : 445 - 462
  • [9] The complexity of certain multi-exponentiation techniques in cryptography
    Avanzi, RM
    JOURNAL OF CRYPTOLOGY, 2005, 18 (04) : 357 - 373
  • [10] The Complexity of Certain Multi-Exponentiation Techniques in Cryptography
    Roberto M. Avanzi
    Journal of Cryptology, 2005, 18 : 357 - 373