Optimal probes and error-correction schemes in multi-parameter quantum metrology

被引:26
|
作者
Gorecki, Wojciech [1 ]
Zhou, Sisi [2 ,3 ,4 ,5 ]
Jiang, Liang [2 ,3 ,4 ,5 ]
Demkowicz-Dobrzanski, Rafal [1 ]
机构
[1] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[3] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[4] Yale Univ, Yale Quantum Inst, New Haven, CT 06511 USA
[5] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
来源
QUANTUM | 2020年 / 4卷
关键词
LOCAL ASYMPTOTIC NORMALITY; NOISE;
D O I
10.22331/q-2020-07-02-288
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a necessary and sufficient condition for the possibility of achieving the Heisenberg scaling in general adaptive multi-parameter estimation schemes in presence of Markovian noise. In situations where the Heisenberg scaling is achievable, we provide a semidefinite program to identify the optimal quantum error correcting (QEC) protocol that yields the best estimation precision. We overcome the technical challenges associated with potential incompatibility of the measurement optimally extracting information on different parameters by utilizing the Holevo Cramer-Rao (HCR) bound for pure states. We provide examples of significant advantages offered by our joint-QEC protocols, that sense all the parameters utilizing a single error-corrected subspace, over separate-QEC protocols where each parameter is effectively sensed in a separate sub-space.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Multi-parameter quantum metrology
    Szczykulska, Magdalena
    Baumgratz, Tillmann
    Datta, Animesh
    [J]. ADVANCES IN PHYSICS-X, 2016, 1 (04): : 621 - 639
  • [2] Feedback control and quantum error correction assisted quantum multi-parameter estimation
    Hong, Hai-Yuan
    Lu, Xiu-Juan
    Kuang, Sen
    [J]. CHINESE PHYSICS B, 2023, 32 (04)
  • [3] Feedback control and quantum error correction assisted quantum multi-parameter estimation
    洪海源
    鲁秀娟
    匡森
    [J]. Chinese Physics B, 2023, 32 (04) : 308 - 315
  • [4] Optimal approximate quantum error correction for quantum metrology
    Zhou, Sisi
    Jiang, Liang
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [5] ERROR-CORRECTION SCHEMES FOR VOLUME OPTICAL MEMORIES
    NEIFELD, MA
    HAYES, JD
    [J]. APPLIED OPTICS, 1995, 34 (35): : 8183 - 8191
  • [6] ERROR-CORRECTION SCHEMES FOR DIGITAL TELEVISION BROADCASTING
    GHOSH, M
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 1995, 41 (03) : 400 - 404
  • [7] Quantum Error Correction for Metrology
    Kessler, E. M.
    Lovchinsky, I.
    Sushkov, A. O.
    Lukin, M. D.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (15)
  • [8] Error-Correction Schemes with Erasure Information for Fast Memories
    Evain, Samuel
    Gherman, Valentin
    [J]. 2013 18TH IEEE EUROPEAN TEST SYMPOSIUM (ETS 2013), 2013,
  • [9] THE DIGITAL COMPACT DISK - MODULATION AND ERROR-CORRECTION SCHEMES
    VRIES, LB
    IMMINK, KA
    NIJBOER, JG
    HOEVE, H
    TIMMERMANS, J
    DRIESSEN, LM
    DOI, TT
    ODAKA, K
    FURUKAWA, S
    IWAMOTO, IK
    SAKO, Y
    AGAWA, H
    ITOH, T
    [J]. JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 1980, 28 (12): : 931 - 931
  • [10] An Emulation of Quantum Error-Correction on an FPGA device
    Hart, Michael
    Mc Allister, John
    Rogers, Leo
    Gillan, Charles
    [J]. 2021 31ST INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL 2021), 2021, : 104 - 108