On the complete spacelike hypersurfaces immersed with two distinct principal curvatures in a locally symmetric Lorentz space

被引:3
|
作者
de Lima, Henrique F. [1 ]
dos Santos, Fabio R. [1 ]
Gomes, Jose N. [2 ]
Velasquez, Marco Antonio L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Amazonas, Dept Matemat, BR-69077070 Manaus, Amazonas, Brazil
关键词
Locally symmetric Lorentz spaces; Einstein spacetimes; Complete linear Weingarten spacelike hypersurfaces; Isoparametric hypersurfaces; CONSTANT MEAN-CURVATURE; DE-SITTER SPACE; MAXIMAL SPACE; GEOMETRY; MANIFOLDS;
D O I
10.1007/s13348-015-0145-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our purpose in this paper is to study the geometry of complete linear Weingarten spacelike hypersurfaces immersed with two distinct principal curvatures in a locally symmetric Lorentz space, which is supposed to obey standard curvature constrains. In this setting, we apply some appropriated generalized maximum principles to a suitable Cheng-Yau modified operator in order to guarantee that such a spacelike hypersurface must be isometric to an isoparametric hypersurface of the ambient space.
引用
收藏
页码:379 / 397
页数:19
相关论文
共 50 条