Microwave-assisted synthesis of Zn-WO3 and ZnWO4 for pseudocapacitor applications

被引:33
|
作者
Kumar, R. Dhilip [1 ]
Andou, Y. [2 ]
Karuppuchamy, S. [1 ]
机构
[1] Alagappa Univ, Dept Energy Sci, Karaikkudi 630003, Tamil Nadu, India
[2] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, 2-4 Hibikino, Kitakyushu, Fukuoka 8080196, Japan
关键词
Microwave; Zinc tungstate; Nanopowder; Pseduocapacitor; NANOCRYSTALLINE TITANIUM-DIOXIDE; ELECTRONIC BEHAVIOR; PHOTOCATALYTIC ACTIVITIES; GRAPHENE NANOSHEETS; FACILE SYNTHESIS; COMPOSITE; SUPERCAPACITOR; PERFORMANCE; DEGRADATION; TRANSITION;
D O I
10.1016/j.jpcs.2016.01.022
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanosized Zn-WO3 and ZnWO4 materials have been prepared by microwave irradiation method. The physico-chemical characterization of the prepared nanomaterials was carried out by X-ray diffraction (XRD) and high resolution-scanning electron microscopy (HR-SEM) techniques. The size and shape of the ZnWO4 material can be controlled by changing the temperature. The XRD analysis revealed the formation of monoclinic phase of the calcined nanopowder. The HR-SEM images showed the sphere and plate shape particles. The electrochemical behavior of the ZnWO4 modified electrodes was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) techniques. The synthesized material shows the pseudocapacitance. The specific capacitance of 35.70 F/g was achieved for the Zn-WO3 nanopowder. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [1] Synthesis and characterization of nanostructured Zn-WO3 and ZnWO4 by simple solution growth technique
    Kumar, R. Dhilip
    Karuppuchamy, S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (05) : 3256 - 3261
  • [2] Synthesis and characterization of nanostructured Zn-WO3 and ZnWO4 by simple solution growth technique
    R. Dhilip Kumar
    S. Karuppuchamy
    Journal of Materials Science: Materials in Electronics, 2015, 26 : 3256 - 3261
  • [3] Synthesis of nanoporous Zn-WO3 by microwave irradiation method for photocatalytic applications
    K. Santhi
    C. Rani
    R. Dhilip Kumar
    S. Karuppuchamy
    Journal of Materials Science: Materials in Electronics, 2015, 26 : 10068 - 10074
  • [4] Synthesis of nanoporous Zn-WO3 by microwave irradiation method for photocatalytic applications
    Santhi, K.
    Rani, C.
    Kumar, R. Dhilip
    Karuppuchamy, S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (12) : 10068 - 10074
  • [5] Synthesis and Photocatalytic Properties of ZnWO4 Nanocrystals via a Fast Microwave-Assisted Method
    Yan, Jing
    Shen, Yanhua
    Li, Feng
    Li, Taohai
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [6] Luminescence mechanism of ZnWO4 nanopowder synthesized by microwave-assisted heating
    Tsai, Ming-Kwen
    Lee, Yueh-Chien
    Huang, Chia-Chih
    Hu, Sheng-Yao
    Tiong, Kwong-Kau
    Hong, Bo-Yao
    MECHANICAL ENGINEERING, MATERIALS SCIENCE AND CIVIL ENGINEERING II, 2014, 470 : 44 - +
  • [7] Cubic ZnWO4 nano-photocatalysts synthesized by the microwave-assisted precipitation technique
    Amouzegar, Z.
    Naghizadeh, R.
    Rezaie, H. R.
    Ghahari, M.
    Aminzare, M.
    CERAMICS INTERNATIONAL, 2015, 41 (01) : 1743 - 1747
  • [8] Antiangiogenic evaluation of ZnWO4 nanoparticles synthesised through microwave-assisted hydrothermal method
    Santos, Carla Junia
    Ferreira Soares, Daniel Cristian
    Ferreira, Carolina de Aguiar
    Branco de Barro, Andre Luis
    Cunha Junior, Armandoda Silva
    Moura Filho, Francisco
    JOURNAL OF DRUG TARGETING, 2018, 26 (09) : 806 - 817
  • [9] Microwave-assisted synthesis of nanocrystalline ZnWO4 powders via a water-based citric acid complex precursor
    Ryu, JH
    Lim, CS
    Oh, WC
    Shim, KB
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2004, 5 (04): : 316 - 320
  • [10] A facile synthesis of ZnWO4 nanoparticles by microwave assisted technique and its application in photocatalysis
    Garadkar, K. M.
    Ghule, L. A.
    Sapnar, K. B.
    Dhole, S. D.
    MATERIALS RESEARCH BULLETIN, 2013, 48 (03) : 1105 - 1109