A study of evaluation functions for the graph K-coloring problem

被引:0
|
作者
Porumbel, Daniel Cosmin [1 ]
Hao, Jin-Kao [1 ]
Kuntz, Pascale [2 ]
机构
[1] Univ Angers, LERIA, 2 Bd Lavoisier, F-49045 Angers 01, France
[2] PolytechNantes, LINA, F-44306 Nantes, France
来源
ARTIFICIAL EVOLUTION | 2008年 / 4926卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The evaluation or fitness function is a key component of any heuristic search algorithm. This paper introduces a new evaluation function for the well-known graph K-coloring problem. This function takes into account not only the number of conflicting vertices, but also inherent information related to the structure of the graph. To assess the effectiveness of this new evaluation function, we carry out a number of experiments using a set of DIMACS benchmark graphs. Based on statistic data obtained with a parameter free steepest descent, we show an improvement of the new evaluation function over the classical one.
引用
收藏
页码:124 / +
页数:3
相关论文
共 50 条
  • [1] Generalized Graph k-Coloring Games
    Carosi, Raffaello
    Monaco, Gianpiero
    COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 : 268 - 279
  • [2] Generalized Graph k-Coloring Games
    Raffaello Carosi
    Gianpiero Monaco
    Theory of Computing Systems, 2020, 64 : 1028 - 1041
  • [3] Generalized Graph k-Coloring Games
    Carosi, Raffaello
    Monaco, Gianpiero
    THEORY OF COMPUTING SYSTEMS, 2020, 64 (06) : 1028 - 1041
  • [4] A new graph radio k-coloring algorithm
    Saha, Laxman
    Panigrahi, Pratima
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (01)
  • [5] LOCAL OPTIMA TOPOLOGY FOR THE K-COLORING PROBLEM
    HERTZ, A
    JAUMARD, B
    DEARAGAO, MP
    DISCRETE APPLIED MATHEMATICS, 1994, 49 (1-3) : 257 - 280
  • [6] A special k-coloring for a connected k-chromatic graph
    Chen, GT
    Schelp, RH
    Shreve, WE
    DISCRETE MATHEMATICS, 1997, 170 (1-3) : 231 - 236
  • [7] Special k-coloring for a connected k-chromatic graph
    Chen, G.
    Schelp, R.H.
    Shreve, W.E.
    Discrete Mathematics, 1997, 170 (1-3):
  • [8] An adaptive memory algorithm for the k-coloring problem
    Galinier, Philippe
    Hertz, Alain
    Zufferey, Nicolas
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (02) : 267 - 279
  • [9] On characterizing radio k-coloring problem by path covering problem
    Sarkar, Ushnish
    Adhikari, Avishek
    DISCRETE MATHEMATICS, 2015, 338 (04) : 615 - 620
  • [10] On the k-coloring of intervals
    Discrete Appl Math, 3 (225):