A coupled chemotaxis-fluid model: Global existence

被引:251
|
作者
Liu, Jian-Guo [2 ,3 ]
Lorz, Alexander [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Duke Univ, Dept Phys, Durham, NC 27708 USA
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
KELLER-SEGEL MODEL; AGGREGATION;
D O I
10.1016/j.anihpc.2011.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier-Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 50 条