Dimension constraints improve hypothesis testing for large-scale, graph-associated, brain-image data

被引:1
|
作者
Vo, Tien [1 ]
Mishra, Akshay [1 ]
Ithapu, Vamsi [1 ]
Singh, Vikas [1 ]
Newton, Michael A. [1 ]
机构
[1] Univ Wisconsin, Dept Biostat & Med Informat, 610 Walnut St, Madison, WI 53726 USA
关键词
Empirical Bayes; Graph-respecting partition; GraphMM; Image analysis; Local false-discovery rate; Mixture model; FALSE DISCOVERY RATE; DIRICHLET; UNIVARIATE; INFERENCE; POWER;
D O I
10.1093/biostatistics/kxab001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
For large-scale testing with graph-associated data, we present an empirical Bayes mixture technique to score local false-discovery rates (FDRs). Compared to procedures that ignore the graph, the proposed Graph-based Mixture Model (GraphMM) method gains power in settings where non-null cases form connected subgraphs, and it does so by regularizing parameter contrasts between testing units. Simulations show that GraphMM controls the FDR in a variety of settings, though it may lose control with excessive regularization. On magnetic resonance imaging data from a study of brain changes associated with the onset of Alzheimer's disease, GraphMM produces greater yield than conventional large-scale testing procedures.
引用
收藏
页码:860 / 874
页数:15
相关论文
共 7 条
  • [1] Large-Scale Dynamical Graph Networks Applied to Brain Cancer Image Data Processing
    Tahmassebi, Amirhessam
    Karbaschi, Gelareh
    Meyer-Baese, Uwe
    Meyer-Baese, Anke
    COMPUTATIONAL IMAGING VI, 2021, 11731
  • [2] A modified F-test for hypothesis testing in large-scale data
    Salehi, Mohsen
    Mohammadpour, Adel
    Mohammadi, Mohammad
    Aminghafari, Mina
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2018, 28 (06) : 1078 - 1089
  • [3] Large-Scale Graph Networks and AI Applied to Medical Image Data Processing
    Meyer-Baese, Anke
    Foo, Simon
    Tahmassebi, Amirhessam
    Meyer-Baese, Uwe
    Amani, Ali Moradi
    Goetz, Theresa
    Leithner, Doris
    Stadlbauer, Andreas
    Pinker-Domenig, Katja
    COMPUTATIONAL IMAGING V, 2020, 11396
  • [4] On the Large-scale Graph Data Processing for User Interface Testing in Big Data Science Projects
    Uygun, Yasin
    Oguz, Ramazan Faruk
    Olmezogullari, Erdi
    Aktas, Mehmet S.
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2049 - 2056
  • [5] Post-Selection Inference Following Aggregate Level Hypothesis Testing in Large-Scale Genomic Data
    Heller, Ruth
    Chatterjee, Nilanjan
    Krieger, Abba
    Shi, Jianxin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1770 - 1783
  • [6] Large-Scale Image Mosaicking using Multimodal Hyperedge Constraints from Multiple Registration Methods within the Generalized Graph SLAM Framework
    Pfingsthorn, Max
    Birk, Andreas
    Ferreira, Fausto
    Veruggio, Gianmarco
    Caccia, Massimo
    Bruzzone, Gabriele
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 4564 - 4570
  • [7] BrainXcan identifies brain features associated with behavioral and psychiatric traits using large-scale genetic and imaging data
    Liang, Yanyu
    Nyasimi, Festus
    Melia, Owen
    Carroll, Timothy J.
    Brettin, Thomas
    Brown, Andrew
    Im, Hae Kyung
    DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2025, 73