Verified numerical computations for an inverse elliptic eigenvalue problem with finite data

被引:1
|
作者
Nakao, MT [1 ]
Watanabe, Y
Yamamoto, N
机构
[1] Kyushu Univ 33, Grad Sch Math, Fukuoka 8128581, Japan
[2] Kyushu Univ, Comp & Commun Ctr, Fukuoka 8128581, Japan
[3] Univ Electrocommun, Tokyo 1828585, Japan
关键词
inverse elliptic eigenvalue problem; numerical verification method; computer assisted proof;
D O I
10.1007/BF03168592
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a numerical enclosure method for solutions of an inverse Dirichlet eigenvalue problem. When the finite number of prescribed eigenvalues are given, we reconstruct a potential function, with guaranteed error bounds, for which the corresponding elliptic operator exactly has those eigenvalues including the ordering property. All computations are executed with numerical verifications based upon the finite and infinite fixed point theorems using interval arithmetic. Therefore, the results obtained are mathematically correct. We present numerical examples which confirm us the enclosure algorithm works on real problems.
引用
收藏
页码:587 / 602
页数:16
相关论文
共 50 条
  • [1] Verified numerical computations for an inverse elliptic eigenvalue problem with finite data
    Mitsuhiro T. Nakao
    Yoshitaka Watanabe
    Nobito Yamamoto
    Japan Journal of Industrial and Applied Mathematics, 2001, 18 : 587 - 602
  • [2] THE INVERSE EIGENVALUE PROBLEM WITH FINITE DATA
    BARNES, DC
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (03) : 732 - 753
  • [3] On the inverse spectral stability for the transmission eigenvalue problem with finite data
    Xu, Xiao-Chuan
    Yang, Chuan-Fu
    INVERSE PROBLEMS, 2020, 36 (08)
  • [4] NUMERICAL APPROXIMATION OF THE ELLIPTIC EIGENVALUE PROBLEM BY STABILIZED NONCONFORMING FINITE ELEMENT METHOD
    Weng, Zhifeng
    Zhai, Shuying
    Zeng, Yuping
    Yue, Xiaoqiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1161 - 1176
  • [5] Verified numerical computations for multiple and nearly multiple eigenvalues of elliptic operators
    Toyonaga, K
    Nakao, MT
    Watanabe, Y
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 147 (01) : 175 - 190
  • [6] Verified norm estimation for the inverse of linear elliptic operators using eigenvalue evaluation
    Kazuaki Tanaka
    Akitoshi Takayasu
    Xuefeng Liu
    Shin’ichi Oishi
    Japan Journal of Industrial and Applied Mathematics, 2014, 31 : 665 - 679
  • [7] Verified norm estimation for the inverse of linear elliptic operators using eigenvalue evaluation
    Tanaka, Kazuaki
    Takayasu, Akitoshi
    Liu, Xuefeng
    Oishi, Shin'ichi
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2014, 31 (03) : 665 - 679
  • [8] THE INVERSE EIGENVALUE PROBLEM WITH FINITE DATA FOR PARTIAL-DIFFERENTIAL EQUATIONS
    BARNES, DC
    KNOBEL, R
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (03) : 616 - 632
  • [9] VERIFIED COMPUTATIONS OF EIGENVALUE EXCLOSURES FOR EIGENVALUE PROBLEMS IN HILBERT SPACES
    Watanabe, Yoshitaka
    Nagatou, Kaori
    Plum, Michael
    Nakao, Mitsuhiro T.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 975 - 992
  • [10] INVERSE EIGENVALUE PROBLEM FOR A FINITE MULTIPLYING SLAB
    SENGUPTA, A
    GANGULY, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (07): : 2341 - 2352